In situ construction of N-rich carbon nitride (C3N5)/silver phosphate (Ag3PO4) S-scheme heterojunctions for the efficient photocatalytic removal of levofloxacin antibiotic and RhB
{"title":"In situ construction of N-rich carbon nitride (C3N5)/silver phosphate (Ag3PO4) S-scheme heterojunctions for the efficient photocatalytic removal of levofloxacin antibiotic and RhB","authors":"Xiaodong Liu, Yuanfei Li, Huanli Wang, Jiayuan Liu, Jingchuan Fu, Jia Liu, Shijie Li","doi":"10.1007/s42823-024-00741-1","DOIUrl":null,"url":null,"abstract":"<div><p>Building step-scheme (S-scheme) heterojunctions has recently emerged as a highly effective approach for developing superior photocatalysts for water purification. Herein, a C<sub>3</sub>N<sub>5</sub>/Ag<sub>3</sub>PO<sub>4</sub> (CA) S-scheme heterojunction was prepared by in situ growth of Ag<sub>3</sub>PO<sub>4</sub> nanoparticles on 2D C<sub>3</sub>N<sub>5</sub> nanosheets. Notably, under visible-light irridiation, CA exhibited significantly higher activity in the photodegradation of LEVO, which is about 28.38, 2.41, and 2.14 times higher than the rates for C<sub>3</sub>N<sub>5</sub>, Ag<sub>3</sub>PO<sub>4</sub>, and the mixture, respectively. Based on the radical scavenging experiments, the mechanism for enhanced photocatalytic performance has been analyzed, is attributed to improved interfacial charge separation, the elevated redox potential of photon-generated electrons and holes, and the increased generation of active species resulting from the S-scheme transfer of photoinduced carriers. Additionally, CA demonstrates greater stability than either C<sub>3</sub>N<sub>5</sub> or Ag<sub>3</sub>PO<sub>4</sub> alone in the photo-oxidation of LEVO and the photodegradation of RhB. In essence, this study not only deepens our comprehension of the photocatalytic mechanism of CA, but also pioneers a novel concept for the development of highly effective and stable S-type heterojunction photocatalysts.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 7","pages":"1995 - 2011"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00741-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Building step-scheme (S-scheme) heterojunctions has recently emerged as a highly effective approach for developing superior photocatalysts for water purification. Herein, a C3N5/Ag3PO4 (CA) S-scheme heterojunction was prepared by in situ growth of Ag3PO4 nanoparticles on 2D C3N5 nanosheets. Notably, under visible-light irridiation, CA exhibited significantly higher activity in the photodegradation of LEVO, which is about 28.38, 2.41, and 2.14 times higher than the rates for C3N5, Ag3PO4, and the mixture, respectively. Based on the radical scavenging experiments, the mechanism for enhanced photocatalytic performance has been analyzed, is attributed to improved interfacial charge separation, the elevated redox potential of photon-generated electrons and holes, and the increased generation of active species resulting from the S-scheme transfer of photoinduced carriers. Additionally, CA demonstrates greater stability than either C3N5 or Ag3PO4 alone in the photo-oxidation of LEVO and the photodegradation of RhB. In essence, this study not only deepens our comprehension of the photocatalytic mechanism of CA, but also pioneers a novel concept for the development of highly effective and stable S-type heterojunction photocatalysts.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.