{"title":"Effects of Residual Tensor and Pairing Forces on the Gamow-Teller states in Magic Nuclei, 48Ca, 90Zr, 132Sn, and 208Pb","authors":"E. Ha, M. Cheoun, H. Sagawa","doi":"10.1093/ptep/ptae077","DOIUrl":null,"url":null,"abstract":"\n We investigate the effects of residual tensor force (TF) and pairing force on the Gamow-Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn and 208Pb. The TF is taken into account by using the Brückner G-matrix theory with the charge-dependent (CD) Bonn potential as the residual interaction of charge-exchange quasiparticle random phase approximation (QRPA). We found that particle-particle (p − p) tensor interaction does not affect the GT transitions because of the closed shell nature in the nuclei, but repulsive particle-hole (p − h) residual interaction for the p − h configuration of spin-orbit partners dominates the high-lying giant GT states for all of the nuclei. It is also shown that appreciable GT strengths are shifted to lower energy region by the attractive p − h TF for the same jπ = jν configuration, and produce the low-lying GT peak about 2.5 MeV in 48Ca. Simultaneously, in 90Zr and 132Sn, the low-energy GT strength appears as a lower energy shoulder near the main GT peak. On the other hand, the shift of the low-lying GT state is not seen clearly for 208Pb because of the strong spin-orbit splitting of high j orbits, which dominates the GT strength.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"32 33","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effects of residual tensor force (TF) and pairing force on the Gamow-Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn and 208Pb. The TF is taken into account by using the Brückner G-matrix theory with the charge-dependent (CD) Bonn potential as the residual interaction of charge-exchange quasiparticle random phase approximation (QRPA). We found that particle-particle (p − p) tensor interaction does not affect the GT transitions because of the closed shell nature in the nuclei, but repulsive particle-hole (p − h) residual interaction for the p − h configuration of spin-orbit partners dominates the high-lying giant GT states for all of the nuclei. It is also shown that appreciable GT strengths are shifted to lower energy region by the attractive p − h TF for the same jπ = jν configuration, and produce the low-lying GT peak about 2.5 MeV in 48Ca. Simultaneously, in 90Zr and 132Sn, the low-energy GT strength appears as a lower energy shoulder near the main GT peak. On the other hand, the shift of the low-lying GT state is not seen clearly for 208Pb because of the strong spin-orbit splitting of high j orbits, which dominates the GT strength.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico