Effects of Residual Tensor and Pairing Forces on the Gamow-Teller states in Magic Nuclei, 48Ca, 90Zr, 132Sn, and 208Pb

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
E. Ha, M. Cheoun, H. Sagawa
{"title":"Effects of Residual Tensor and Pairing Forces on the Gamow-Teller states in Magic Nuclei, 48Ca, 90Zr, 132Sn, and 208Pb","authors":"E. Ha, M. Cheoun, H. Sagawa","doi":"10.1093/ptep/ptae077","DOIUrl":null,"url":null,"abstract":"\n We investigate the effects of residual tensor force (TF) and pairing force on the Gamow-Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn and 208Pb. The TF is taken into account by using the Brückner G-matrix theory with the charge-dependent (CD) Bonn potential as the residual interaction of charge-exchange quasiparticle random phase approximation (QRPA). We found that particle-particle (p − p) tensor interaction does not affect the GT transitions because of the closed shell nature in the nuclei, but repulsive particle-hole (p − h) residual interaction for the p − h configuration of spin-orbit partners dominates the high-lying giant GT states for all of the nuclei. It is also shown that appreciable GT strengths are shifted to lower energy region by the attractive p − h TF for the same jπ = jν configuration, and produce the low-lying GT peak about 2.5 MeV in 48Ca. Simultaneously, in 90Zr and 132Sn, the low-energy GT strength appears as a lower energy shoulder near the main GT peak. On the other hand, the shift of the low-lying GT state is not seen clearly for 208Pb because of the strong spin-orbit splitting of high j orbits, which dominates the GT strength.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"32 33","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the effects of residual tensor force (TF) and pairing force on the Gamow-Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn and 208Pb. The TF is taken into account by using the Brückner G-matrix theory with the charge-dependent (CD) Bonn potential as the residual interaction of charge-exchange quasiparticle random phase approximation (QRPA). We found that particle-particle (p − p) tensor interaction does not affect the GT transitions because of the closed shell nature in the nuclei, but repulsive particle-hole (p − h) residual interaction for the p − h configuration of spin-orbit partners dominates the high-lying giant GT states for all of the nuclei. It is also shown that appreciable GT strengths are shifted to lower energy region by the attractive p − h TF for the same jπ = jν configuration, and produce the low-lying GT peak about 2.5 MeV in 48Ca. Simultaneously, in 90Zr and 132Sn, the low-energy GT strength appears as a lower energy shoulder near the main GT peak. On the other hand, the shift of the low-lying GT state is not seen clearly for 208Pb because of the strong spin-orbit splitting of high j orbits, which dominates the GT strength.
残余张力和配对力对 48Ca、90Zr、132Sn 和 208Pb 魔核中伽莫-泰勒态的影响
我们研究了残余张力(TF)和配对力对 48Ca、90Zr、132Sn 和 208Pb 四种魔核的伽莫-泰勒(GT)跃迁的影响。利用布吕克纳 G 矩阵理论和电荷相关(CD)波恩势作为电荷交换准粒子随机相近似(QRPA)的残余相互作用来考虑 TF。我们发现,由于原子核的闭壳性质,粒子-粒子(p - p)张量相互作用并不影响GT跃迁,但自旋轨道伙伴p - h构型的排斥性粒子-空穴(p - h)残余相互作用主导了所有原子核的高位巨GT态。研究还表明,对于相同的 jπ = jν 配置,具有吸引力的 p - h TF 会将可观的 GT 强度转移到较低的能量区域,并在 48Ca 中产生约 2.5 MeV 的低洼 GT 峰。同时,在 90Zr 和 132Sn 中,低能 GT 强度在 GT 主峰附近以较低能量肩的形式出现。另一方面,在 208Pb 中,由于高 j 轨道的强自旋轨道分裂主导了 GT 强度,因此低能 GT 状态的移动并不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信