Elastic overtaking collisions of large-amplitude ion-acoustic solitons

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Carel P. Olivier
{"title":"Elastic overtaking collisions of large-amplitude ion-acoustic solitons","authors":"Carel P. Olivier","doi":"10.1017/s002237782400062x","DOIUrl":null,"url":null,"abstract":"Overtaking collisions of large-amplitude solitons are investigated via fluid simulations for a plasma consisting of cold ions and Boltzmann-distributed electrons. To achieve this, a new fluid simulation code is presented. In addition, a novel approach to construct soliton initial conditions is developed. Using these ideas, initial conditions are combined that allows the simulation of overtaking collisions. It is shown that, in the small-amplitude regime, simulation results agree well with the two-soliton solution obtained from reductive perturbation theory. Interestingly, in the large amplitude regime, both the slow and fast solitons re-emerge after the collision with no significant change, showing that the collisions remain elastic. A comparison between reductive perturbation analysis and the simulations show that the only significant effect of higher order nonlinearities on overtaking collisions is a reduction in the magnitude of the phase shifts of both solitons.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s002237782400062x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Overtaking collisions of large-amplitude solitons are investigated via fluid simulations for a plasma consisting of cold ions and Boltzmann-distributed electrons. To achieve this, a new fluid simulation code is presented. In addition, a novel approach to construct soliton initial conditions is developed. Using these ideas, initial conditions are combined that allows the simulation of overtaking collisions. It is shown that, in the small-amplitude regime, simulation results agree well with the two-soliton solution obtained from reductive perturbation theory. Interestingly, in the large amplitude regime, both the slow and fast solitons re-emerge after the collision with no significant change, showing that the collisions remain elastic. A comparison between reductive perturbation analysis and the simulations show that the only significant effect of higher order nonlinearities on overtaking collisions is a reduction in the magnitude of the phase shifts of both solitons.
大振幅离子声孤子的弹性超越碰撞
通过对由冷离子和玻尔兹曼分布电子组成的等离子体进行流体模拟,研究了大振幅孤子的超越碰撞。为此,介绍了一种新的流体模拟代码。此外,还开发了一种构建孤子初始条件的新方法。利用这些想法,结合初始条件,可以模拟超车碰撞。结果表明,在小振幅范围内,模拟结果与还原扰动理论得到的双孤子解十分吻合。有趣的是,在大振幅条件下,慢速孤子和快速孤子在碰撞后都会重新出现,但没有显著变化,这表明碰撞仍具有弹性。还原扰动分析与模拟的比较表明,高阶非线性对超越碰撞的唯一显著影响是降低了两个孤子的相移幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信