Jingjing Liu, Liuyi Huang, J. Leveneur, Holger Fiedler, Samuel Jack Clarke, Thea Larsen, J. Kennedy, Mark Taylor
{"title":"Experimental Investigation of PEM Water Electrolyser Stack Performance Under Dynamic Operation Conditions","authors":"Jingjing Liu, Liuyi Huang, J. Leveneur, Holger Fiedler, Samuel Jack Clarke, Thea Larsen, J. Kennedy, Mark Taylor","doi":"10.1149/1945-7111/ad4d1f","DOIUrl":null,"url":null,"abstract":"\n Water electrolysis has been used to produce green hydrogen, for which identifying optimum operation parameters is crucial to improve its energy efficiency and energy consumption. This paper used a commercial proton exchange membrane (PEM) water electrolyser stack (180 W) to demonstrate the correlation between operating current change, temperature, and water flow rate and their impact on the thermal and electrical performance of the stack. It was found that the current control regime and temperature control can offset the voltage ageing in a long-term operating electrolyser with no negative impact on the H2 production rate. For a controlled decreasing current path, in the medium range of operating current, the stack’s energy efficiency was improved by 5%, and 3.7% specific energy consumption can be saved comparing to the standard operation (57.8 kWh·kg-1H2). The results provide insights into the potential optimisation in operation conditions to further increase cell energy efficiency and reduce energy consumption. This new finding sheds light on developing an energy- and cost-saving operating method for long-term green hydrogen production via water electrolysis.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad4d1f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water electrolysis has been used to produce green hydrogen, for which identifying optimum operation parameters is crucial to improve its energy efficiency and energy consumption. This paper used a commercial proton exchange membrane (PEM) water electrolyser stack (180 W) to demonstrate the correlation between operating current change, temperature, and water flow rate and their impact on the thermal and electrical performance of the stack. It was found that the current control regime and temperature control can offset the voltage ageing in a long-term operating electrolyser with no negative impact on the H2 production rate. For a controlled decreasing current path, in the medium range of operating current, the stack’s energy efficiency was improved by 5%, and 3.7% specific energy consumption can be saved comparing to the standard operation (57.8 kWh·kg-1H2). The results provide insights into the potential optimisation in operation conditions to further increase cell energy efficiency and reduce energy consumption. This new finding sheds light on developing an energy- and cost-saving operating method for long-term green hydrogen production via water electrolysis.