{"title":"Micropatterning MXene/TiO2 Nanocomposite Ink for Gas Sensing","authors":"Jinhong Liu, Chen Chen, 胜辉 夏, Kyle Leatt, Ajit Khosla, Thomas Thundat","doi":"10.1149/11312.0003ecst","DOIUrl":null,"url":null,"abstract":"This work describes the preparation, characterization, and micropatterning of MXene(Ti3C2)/TiO2 nanocomposite inks. MXene nanopowder was oxidized to form MXene/TiO2 nanocomposite powder using an air-aging method. The MXene/TiO2 inks were prepared using deionized water (H2O) as the solvent/dispersant and polyvinylpyrrolidone (PVP) as the surfactant. Various techniques were utilized to characterize the MXene/TiO2 nanocomposite material, and the BET results showed the preferential adsorption of butane of the MXene/TiO2 coating. Utilizing an ultrasonic dispersion printer in conjunction with a stencil mask, the MXene/TiO2 nanocomposite ink was successfully printed onto a 10mm*10mm gold-plated silicon substrate. This process achieved millimeter-level precision control, enabling the printing of fine lines with a width of 1μm and a spacing of 0.05mm. Furthermore, this technique demonstrated the ability to render various complex patterns, thus exemplifying the potential of MXene/TiO2 nanocomposite ink in the field of micro- and nano-manufacturing.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"29 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11312.0003ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work describes the preparation, characterization, and micropatterning of MXene(Ti3C2)/TiO2 nanocomposite inks. MXene nanopowder was oxidized to form MXene/TiO2 nanocomposite powder using an air-aging method. The MXene/TiO2 inks were prepared using deionized water (H2O) as the solvent/dispersant and polyvinylpyrrolidone (PVP) as the surfactant. Various techniques were utilized to characterize the MXene/TiO2 nanocomposite material, and the BET results showed the preferential adsorption of butane of the MXene/TiO2 coating. Utilizing an ultrasonic dispersion printer in conjunction with a stencil mask, the MXene/TiO2 nanocomposite ink was successfully printed onto a 10mm*10mm gold-plated silicon substrate. This process achieved millimeter-level precision control, enabling the printing of fine lines with a width of 1μm and a spacing of 0.05mm. Furthermore, this technique demonstrated the ability to render various complex patterns, thus exemplifying the potential of MXene/TiO2 nanocomposite ink in the field of micro- and nano-manufacturing.