Hard Magnetic FePt Nanoparticles within Nanostructured Silicon to Improve the Maximum Energy Product

K. Rumpf, P. Granitzer, R. Gonzalez-Rodriguez, J. Coffer
{"title":"Hard Magnetic FePt Nanoparticles within Nanostructured Silicon to Improve the Maximum Energy Product","authors":"K. Rumpf, P. Granitzer, R. Gonzalez-Rodriguez, J. Coffer","doi":"10.1149/11304.0011ecst","DOIUrl":null,"url":null,"abstract":"In this work nanostructured silicon, silicon nanotubes (SiNTs) and porous silicon (PSi), with embedded hard magnetic FePt nanoparticles (NPs) is used as platform to create hard magnetic nanomagnet-arrays. The magnetic response of FePt-loaded composite materials is investigated, which have potential in high-performance magnets and as rare earth magnet alternatives. PSi/FePt demonstrates superior hard magnetic behavior with a higher coercivity and remanence compared to SiNTs/FePt. Varying the Fe:Pt molar ratio in deposits results in a small coercivity (HC) change. FePt-loaded samples consistently show increased coercivity and remanence compared to Co-loaded samples, with PSi exhibiting a stronger effect compared to SiNTs. Comparing FePt-loaded samples with Co-NP-loaded samples, in both template types an increase of the coercivity is observed for FePt. Also in the case of Co-loading the utilization of PSi offers higher coercivities compared to SiNTs. From the investigated composite systems the ones consisting of PSi and FePt offer the highest energy product.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"16 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11304.0011ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work nanostructured silicon, silicon nanotubes (SiNTs) and porous silicon (PSi), with embedded hard magnetic FePt nanoparticles (NPs) is used as platform to create hard magnetic nanomagnet-arrays. The magnetic response of FePt-loaded composite materials is investigated, which have potential in high-performance magnets and as rare earth magnet alternatives. PSi/FePt demonstrates superior hard magnetic behavior with a higher coercivity and remanence compared to SiNTs/FePt. Varying the Fe:Pt molar ratio in deposits results in a small coercivity (HC) change. FePt-loaded samples consistently show increased coercivity and remanence compared to Co-loaded samples, with PSi exhibiting a stronger effect compared to SiNTs. Comparing FePt-loaded samples with Co-NP-loaded samples, in both template types an increase of the coercivity is observed for FePt. Also in the case of Co-loading the utilization of PSi offers higher coercivities compared to SiNTs. From the investigated composite systems the ones consisting of PSi and FePt offer the highest energy product.
纳米结构硅中的硬磁性铁铂纳米颗粒可提高最大能量产出
在这项研究中,纳米结构硅、纳米硅管(SiNTs)和多孔硅(PSi)与嵌入式硬磁铁铂纳米粒子(NPs)被用作创建硬磁纳米磁体阵列的平台。研究了铁铂负载复合材料的磁响应,这些材料具有高性能磁体和稀土磁体替代品的潜力。与 SiNTs/FePt 相比,PSi/FePt 具有更高的矫顽力和剩磁,表现出卓越的硬磁性。与 Co-loaded 样品相比,FePt-loaded 样品始终显示出更高的矫顽力和剩磁,与 SiNT 相比,PSi 显示出更强的效果。将铁铂负载样品与 Co-NP 负载样品进行比较,发现在两种模板类型中,铁铂的矫顽力都有所增加。在所研究的复合系统中,由 PSi 和 FePt 组成的系统具有最高的能积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信