{"title":"Numerical Calculation of Gas–Liquid Two-Phase Flow in Tesla Valve","authors":"Jie Gong, Guohua Li, Ran Liu, Zijuan Wang","doi":"10.3390/aerospace11050409","DOIUrl":null,"url":null,"abstract":"In this paper, the gas–liquid two-phase flow within a Tesla valve under zero-gravity conditions is numerically studied. Based on the VOF model and the inlet two-phase separation method, the forward and reverse flow patterns and pressure drop changes in a Tesla valve at different inlet velocities were analyzed. At an inlet velocity of 0.1–0.2 m/s, the flow pattern was slug flow, the bubbles were evenly distributed in different positions in the Tesla valve, and the velocity difference between the main pipe and the arc branch pipe was small. When the inlet velocity was 0.4 m/s, the main flow pattern was annular flow, and there was a phenomenon of gas–liquid phase separation through different flow channels, which was related to centrifugal force. At an inlet velocity of 0.6–0.8 m/s, bubbly flow and slug flow coexisted, which was related to the uneven velocity. In the study range, the difference in the forward and reverse pressure drops of two-phase flow was smaller than that of single-phase flow, and the two-phase diodicity decreased first and then increased with the change in inlet velocity, reaching minimum values of 0.78 at 0.2 m/s and 1.44 at 0.8 m/s.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"56 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the gas–liquid two-phase flow within a Tesla valve under zero-gravity conditions is numerically studied. Based on the VOF model and the inlet two-phase separation method, the forward and reverse flow patterns and pressure drop changes in a Tesla valve at different inlet velocities were analyzed. At an inlet velocity of 0.1–0.2 m/s, the flow pattern was slug flow, the bubbles were evenly distributed in different positions in the Tesla valve, and the velocity difference between the main pipe and the arc branch pipe was small. When the inlet velocity was 0.4 m/s, the main flow pattern was annular flow, and there was a phenomenon of gas–liquid phase separation through different flow channels, which was related to centrifugal force. At an inlet velocity of 0.6–0.8 m/s, bubbly flow and slug flow coexisted, which was related to the uneven velocity. In the study range, the difference in the forward and reverse pressure drops of two-phase flow was smaller than that of single-phase flow, and the two-phase diodicity decreased first and then increased with the change in inlet velocity, reaching minimum values of 0.78 at 0.2 m/s and 1.44 at 0.8 m/s.
本文对零重力条件下特斯拉阀门内的气液两相流进行了数值研究。基于 VOF 模型和入口两相分离方法,分析了不同入口速度下特斯拉阀门内的正向、反向流动模式和压降变化。当进口速度为 0.1-0.2 m/s 时,流动模式为蛞蝓流,气泡均匀分布在特斯拉阀的不同位置,主管与弧形支管之间的速度差很小。当入口速度为 0.4 m/s 时,主要流型为环形流,出现了气液相通过不同流道分离的现象,这与离心力有关。在入口速度为 0.6-0.8 m/s 时,气泡流和蛞蝓流并存,这与速度不均匀有关。在研究范围内,两相流的正向和反向压降差小于单相流,两相二元性随着入口速度的变化先减小后增大,在 0.2 m/s 和 0.8 m/s 时分别达到 0.78 和 1.44 的最小值。
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.