Numerical Calculation of Gas–Liquid Two-Phase Flow in Tesla Valve

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Jie Gong, Guohua Li, Ran Liu, Zijuan Wang
{"title":"Numerical Calculation of Gas–Liquid Two-Phase Flow in Tesla Valve","authors":"Jie Gong, Guohua Li, Ran Liu, Zijuan Wang","doi":"10.3390/aerospace11050409","DOIUrl":null,"url":null,"abstract":"In this paper, the gas–liquid two-phase flow within a Tesla valve under zero-gravity conditions is numerically studied. Based on the VOF model and the inlet two-phase separation method, the forward and reverse flow patterns and pressure drop changes in a Tesla valve at different inlet velocities were analyzed. At an inlet velocity of 0.1–0.2 m/s, the flow pattern was slug flow, the bubbles were evenly distributed in different positions in the Tesla valve, and the velocity difference between the main pipe and the arc branch pipe was small. When the inlet velocity was 0.4 m/s, the main flow pattern was annular flow, and there was a phenomenon of gas–liquid phase separation through different flow channels, which was related to centrifugal force. At an inlet velocity of 0.6–0.8 m/s, bubbly flow and slug flow coexisted, which was related to the uneven velocity. In the study range, the difference in the forward and reverse pressure drops of two-phase flow was smaller than that of single-phase flow, and the two-phase diodicity decreased first and then increased with the change in inlet velocity, reaching minimum values of 0.78 at 0.2 m/s and 1.44 at 0.8 m/s.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050409","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the gas–liquid two-phase flow within a Tesla valve under zero-gravity conditions is numerically studied. Based on the VOF model and the inlet two-phase separation method, the forward and reverse flow patterns and pressure drop changes in a Tesla valve at different inlet velocities were analyzed. At an inlet velocity of 0.1–0.2 m/s, the flow pattern was slug flow, the bubbles were evenly distributed in different positions in the Tesla valve, and the velocity difference between the main pipe and the arc branch pipe was small. When the inlet velocity was 0.4 m/s, the main flow pattern was annular flow, and there was a phenomenon of gas–liquid phase separation through different flow channels, which was related to centrifugal force. At an inlet velocity of 0.6–0.8 m/s, bubbly flow and slug flow coexisted, which was related to the uneven velocity. In the study range, the difference in the forward and reverse pressure drops of two-phase flow was smaller than that of single-phase flow, and the two-phase diodicity decreased first and then increased with the change in inlet velocity, reaching minimum values of 0.78 at 0.2 m/s and 1.44 at 0.8 m/s.
特斯拉阀门中气液两相流的数值计算
本文对零重力条件下特斯拉阀门内的气液两相流进行了数值研究。基于 VOF 模型和入口两相分离方法,分析了不同入口速度下特斯拉阀门内的正向、反向流动模式和压降变化。当进口速度为 0.1-0.2 m/s 时,流动模式为蛞蝓流,气泡均匀分布在特斯拉阀的不同位置,主管与弧形支管之间的速度差很小。当入口速度为 0.4 m/s 时,主要流型为环形流,出现了气液相通过不同流道分离的现象,这与离心力有关。在入口速度为 0.6-0.8 m/s 时,气泡流和蛞蝓流并存,这与速度不均匀有关。在研究范围内,两相流的正向和反向压降差小于单相流,两相二元性随着入口速度的变化先减小后增大,在 0.2 m/s 和 0.8 m/s 时分别达到 0.78 和 1.44 的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信