Jeffrey Nordine, Marcus Kubsch, David Fortus, Joseph Krajcik, Knut Neumann
{"title":"Middle school students' use of the energy concept to engage in new learning: What ideas matter?","authors":"Jeffrey Nordine, Marcus Kubsch, David Fortus, Joseph Krajcik, Knut Neumann","doi":"10.1002/tea.21950","DOIUrl":null,"url":null,"abstract":"<p>One reason for the widespread use of the energy concept across the sciences is that energy analysis can be used to interpret the behavior of systems even if one does not know the particular mechanisms that underlie the observed behavior. By providing an approach to interpreting unfamiliar phenomena, energy provides a lens on phenomena that can set the stage for deeper learning about how and why phenomena occur. However, not all energy ideas are equally productive in setting the stage for new learning. In particular, researchers have debated the value of teaching students to interpret phenomena in terms of energy forms and transformations. In this study, we investigated how two different approaches to middle school energy instruction—one emphasizing energy transformations between forms and one emphasizing energy transfers between systems—prepared students to use their existing energy knowledge to engage in new learning about a novel energy-related phenomenon. To do this, we designed a new assessment instrument to elicit student initial ideas about the phenomenon and to compare how effectively students from each approach learned from authentic learning resources. Our results indicate that students who learned to interpret phenomenon in terms of energy transfers between systems learned more effectively from available learning resources than did students who learned to interpret phenomena in terms of energy forms and transformations. This study informs the design of introductory energy instruction and approaches for assessing how students existing knowledge guides new learning about phenomena.</p>","PeriodicalId":48369,"journal":{"name":"Journal of Research in Science Teaching","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tea.21950","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Science Teaching","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tea.21950","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
One reason for the widespread use of the energy concept across the sciences is that energy analysis can be used to interpret the behavior of systems even if one does not know the particular mechanisms that underlie the observed behavior. By providing an approach to interpreting unfamiliar phenomena, energy provides a lens on phenomena that can set the stage for deeper learning about how and why phenomena occur. However, not all energy ideas are equally productive in setting the stage for new learning. In particular, researchers have debated the value of teaching students to interpret phenomena in terms of energy forms and transformations. In this study, we investigated how two different approaches to middle school energy instruction—one emphasizing energy transformations between forms and one emphasizing energy transfers between systems—prepared students to use their existing energy knowledge to engage in new learning about a novel energy-related phenomenon. To do this, we designed a new assessment instrument to elicit student initial ideas about the phenomenon and to compare how effectively students from each approach learned from authentic learning resources. Our results indicate that students who learned to interpret phenomenon in terms of energy transfers between systems learned more effectively from available learning resources than did students who learned to interpret phenomena in terms of energy forms and transformations. This study informs the design of introductory energy instruction and approaches for assessing how students existing knowledge guides new learning about phenomena.
期刊介绍:
Journal of Research in Science Teaching, the official journal of NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research, publishes reports for science education researchers and practitioners on issues of science teaching and learning and science education policy. Scholarly manuscripts within the domain of the Journal of Research in Science Teaching include, but are not limited to, investigations employing qualitative, ethnographic, historical, survey, philosophical, case study research, quantitative, experimental, quasi-experimental, data mining, and data analytics approaches; position papers; policy perspectives; critical reviews of the literature; and comments and criticism.