{"title":"Discontinuous Shear Thickening of Suspensions of Magnetic Particles in Relation to the Polymer Coating on Their Surfaces","authors":"Georges Bossis, Olga Volkova, Y. Grasselli","doi":"10.3390/colloids8030033","DOIUrl":null,"url":null,"abstract":"The phenomenon of discontinuous shear thickening (DST) is observed in suspensions of solid particles with a very high-volume fraction. It is characterized by an abrupt decrease in the shear rate for critical stress during a ramp of stress. This behavior can be reproduced in numerical simulations by introducing a local friction between two particles above a given local force. We present experimental results showing this DST behavior obtained with suspensions of magnetic (iron) and nonmagnetic (calcium carbonate) particles and different amounts of a superplasticizer molecule used in the cement industry. For both types of particles, the same behavior was observed with first an increase in critical stress with the amount of plasticizer followed by a decrease at higher concentrations but with a larger viscosity before critical stress was reached. At a low concentration of plasticizer, the low critical stress is interpreted by the local sliding of plasticizer molecules on the surface of particles. At higher concentrations, when total coverage is achieved, the critical stress is higher since it has to remove the molecules out of the surface. At still higher concentrations, the increase in viscosity is explained by the formation of multilayers of molecules on the surface of the particles. This interpretation is supported by the measurement of the adsorption isotherm of the plasticizer on the surface of the particles.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"4 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids8030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenon of discontinuous shear thickening (DST) is observed in suspensions of solid particles with a very high-volume fraction. It is characterized by an abrupt decrease in the shear rate for critical stress during a ramp of stress. This behavior can be reproduced in numerical simulations by introducing a local friction between two particles above a given local force. We present experimental results showing this DST behavior obtained with suspensions of magnetic (iron) and nonmagnetic (calcium carbonate) particles and different amounts of a superplasticizer molecule used in the cement industry. For both types of particles, the same behavior was observed with first an increase in critical stress with the amount of plasticizer followed by a decrease at higher concentrations but with a larger viscosity before critical stress was reached. At a low concentration of plasticizer, the low critical stress is interpreted by the local sliding of plasticizer molecules on the surface of particles. At higher concentrations, when total coverage is achieved, the critical stress is higher since it has to remove the molecules out of the surface. At still higher concentrations, the increase in viscosity is explained by the formation of multilayers of molecules on the surface of the particles. This interpretation is supported by the measurement of the adsorption isotherm of the plasticizer on the surface of the particles.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.