Short-time high-temperature oxidation behavior of nanocrystalline Ta coating at 850 °C

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunsong Niu, Lingling Xing, Shenglong Zhu, Jinfeng Huang, Minghui Chen, Fuhui Wang, Qiang Chen
{"title":"Short-time high-temperature oxidation behavior of nanocrystalline Ta coating at 850 °C","authors":"Yunsong Niu, Lingling Xing, Shenglong Zhu, Jinfeng Huang, Minghui Chen, Fuhui Wang, Qiang Chen","doi":"10.1038/s41529-024-00465-7","DOIUrl":null,"url":null,"abstract":"Short-time oxidation behavior of nanocrystalline Ta coating is studied at 850 °C in comparison with that of the Ta sheet. Owing to the large PBR value and insufficient expansion space, the oxide scale on Ta sheet is dramatically cracked, delaminated and pulverized, resulting in rapid deterioration. For nanocrystalline Ta coatings with columnar structures and quantitative grain boundaries, a rapid oxygen diffusion rate causes no initial Ta2O5 to form. The gap between columns provides spaces for bulk expansion, resulting in few opening cracks and delamination. Ta oxidation experiences a crystallization course from amorphous Ta oxide, leading to in situ temperature surging and thus pulverization.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00465-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00465-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Short-time oxidation behavior of nanocrystalline Ta coating is studied at 850 °C in comparison with that of the Ta sheet. Owing to the large PBR value and insufficient expansion space, the oxide scale on Ta sheet is dramatically cracked, delaminated and pulverized, resulting in rapid deterioration. For nanocrystalline Ta coatings with columnar structures and quantitative grain boundaries, a rapid oxygen diffusion rate causes no initial Ta2O5 to form. The gap between columns provides spaces for bulk expansion, resulting in few opening cracks and delamination. Ta oxidation experiences a crystallization course from amorphous Ta oxide, leading to in situ temperature surging and thus pulverization.

Abstract Image

Abstract Image

纳米晶 Ta 涂层在 850 °C 下的短时高温氧化行为
研究了纳米晶 Ta 涂层在 850 ℃ 下的短时氧化行为,并与 Ta 板的短时氧化行为进行了比较。由于 PBR 值较大且膨胀空间不足,Ta 片上的氧化鳞片出现了明显的裂纹、分层和粉化,从而导致快速劣化。对于具有柱状结构和定量晶界的纳米晶 Ta 涂层,快速的氧扩散速度不会形成初始的 Ta2O5。柱状结构之间的间隙为体积膨胀提供了空间,因此很少出现开口裂纹和分层。Ta 氧化经历了从无定形 Ta 氧化物结晶的过程,导致原位温度骤升,进而粉碎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信