Petrography and chemistry of chromite phases from the Mesoarchean chromitite bodies of the Boula-Nuasahi ultramafic complex, India: Indicators of magmatic evolution and hydrothermal alteration

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Bibhuranjan Nayak, Rojalin Debata, Kamali Kesavan, Ashutosh Rath, Lars H. Gronen, Sven Sindern, Thomas Wagner
{"title":"Petrography and chemistry of chromite phases from the Mesoarchean chromitite bodies of the Boula-Nuasahi ultramafic complex, India: Indicators of magmatic evolution and hydrothermal alteration","authors":"Bibhuranjan Nayak,&nbsp;Rojalin Debata,&nbsp;Kamali Kesavan,&nbsp;Ashutosh Rath,&nbsp;Lars H. Gronen,&nbsp;Sven Sindern,&nbsp;Thomas Wagner","doi":"10.1007/s00710-024-00856-3","DOIUrl":null,"url":null,"abstract":"<div><p>Occurrence of “ferrian chromites” have earlier been reported from the Mesoarchean chromite deposits in the Boula-Nuasahi ultramafic complex (BNUC) of India. We have investigated the chromitite bodies in the southern part of the BNUC (i.e., Bangur area) with respect to the mode of occurrence, petrography, chemistry and structure of the chromite types. Although morphologically five varieties of chromite ore were found, chemically only three types of chromite can be distinguished based on EPMA analysis. These are: 1) Type I: magnesiochromite [high Cr<sub>2</sub>O<sub>3</sub> (57–65 wt.%), low iron (FeO: 13–17 wt.%), X<sup>Fe3+</sup>: &lt; 0.1 apfu]; 2) Type II: ferrian chromite [moderate Cr<sub>2</sub>O<sub>3</sub> (43–53 wt.%), high iron (FeO: 27–30 wt.%), X<sup>Fe3+</sup>: 0.1 to 0.5 apfu]; and 3) Type III: ferrichromite [low Cr<sub>2</sub>O<sub>3</sub> (19–29 wt.%), very high iron (FeO: 55–67 wt.%), X<sup>Fe3+</sup>: 0.5 to 1.0 apfu]. Stoichiometrically calculated Fe<sub>2</sub>O<sub>3</sub> content is very high in some grains (maximum 47 wt.%). Geochemical discrimination diagrams for the Type I pristine magnesiochromite suggest a dominantly boninitic parental magma. Trace element data obtained from LA-ICP-MS indicate that the Type II chromite has formed from a more evolved magma and is richer in trace elements such as V, Mn, Co, Cu, Pb, Ga, and Nb whereas the Type III ferrichromite shows unusually high Ti and erratic high concentrations of trace elements. Alterations in chromite is noticed in two different thermal regimes: 1) 100–200 °C related to serpentinization of dunite and peridotite rocks where chromite grains show an unaltered core, an intermediate ferrian chromite rim and an outer magnetite rim; 2) 500–600 °C where the entire chromite grain is converted to ferrichromite which can be linked to later intrusion of the Bangur gabbro. While HR-TEM study reveals that all three chromite-types have face-centered cubic structure, Raman spectroscopy indicates that there is a gradual transition of the structural state from normal spinel structure (Type I) through Type II to a fully inverse spinel structure in case of ferrichromite.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-024-00856-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Occurrence of “ferrian chromites” have earlier been reported from the Mesoarchean chromite deposits in the Boula-Nuasahi ultramafic complex (BNUC) of India. We have investigated the chromitite bodies in the southern part of the BNUC (i.e., Bangur area) with respect to the mode of occurrence, petrography, chemistry and structure of the chromite types. Although morphologically five varieties of chromite ore were found, chemically only three types of chromite can be distinguished based on EPMA analysis. These are: 1) Type I: magnesiochromite [high Cr2O3 (57–65 wt.%), low iron (FeO: 13–17 wt.%), XFe3+: < 0.1 apfu]; 2) Type II: ferrian chromite [moderate Cr2O3 (43–53 wt.%), high iron (FeO: 27–30 wt.%), XFe3+: 0.1 to 0.5 apfu]; and 3) Type III: ferrichromite [low Cr2O3 (19–29 wt.%), very high iron (FeO: 55–67 wt.%), XFe3+: 0.5 to 1.0 apfu]. Stoichiometrically calculated Fe2O3 content is very high in some grains (maximum 47 wt.%). Geochemical discrimination diagrams for the Type I pristine magnesiochromite suggest a dominantly boninitic parental magma. Trace element data obtained from LA-ICP-MS indicate that the Type II chromite has formed from a more evolved magma and is richer in trace elements such as V, Mn, Co, Cu, Pb, Ga, and Nb whereas the Type III ferrichromite shows unusually high Ti and erratic high concentrations of trace elements. Alterations in chromite is noticed in two different thermal regimes: 1) 100–200 °C related to serpentinization of dunite and peridotite rocks where chromite grains show an unaltered core, an intermediate ferrian chromite rim and an outer magnetite rim; 2) 500–600 °C where the entire chromite grain is converted to ferrichromite which can be linked to later intrusion of the Bangur gabbro. While HR-TEM study reveals that all three chromite-types have face-centered cubic structure, Raman spectroscopy indicates that there is a gradual transition of the structural state from normal spinel structure (Type I) through Type II to a fully inverse spinel structure in case of ferrichromite.

Abstract Image

Abstract Image

印度 Boula-Nuasahi 超基性复合体中生代铬铁矿体铬铁矿相的岩相学和化学:岩浆演化和热液蚀变的指标
印度布拉-努阿萨希超基性岩群(BNUC)中的中生代铬铁矿床曾出现过 "铁铬铁矿"。我们对 BNUC 南部(即 Bangur 地区)的铬铁矿体进行了调查,研究了铬铁矿类型的出现方式、岩相学、化学和结构。虽然在形态上发现了五种铬铁矿,但根据 EPMA 分析,在化学上只能区分出三种类型的铬铁矿。它们是1) 类型 I:镁铬铁矿[高 Cr2O3(57-65 wt.%),低铁(FeO:13-17 wt.%),XFe3+:< 0.1 apfu];2) 类型 II:铁铬铁矿[中等 Cr2O3(43-53 wt.%),高铁(FeO:27-30 wt.%),XFe3+:0.1 至 0.5 apfu];以及 3) 类型 III:铁铬铁矿[低 Cr2O3(19-29 wt.%),高铁(FeO:55-67 wt.%),XFe3+:0.5 至 1.0 apfu]。按化学计量法计算,某些晶粒中的 Fe2O3 含量非常高(最高达 47 重量%)。I 型原始菱镁铬铁矿的地球化学判别图表明其母岩主要为倭黑质岩浆。从 LA-ICP-MS 获得的微量元素数据表明,II 型铬铁矿是由更进化的岩浆形成的,含有更丰富的微量元素,如 V、Mn、Co、Cu、Pb、Ga 和 Nb,而 III 型铁铬铁矿则显示出异常高的 Ti 和不稳定的高浓度微量元素。铬铁矿在两种不同的热状态下发生变化:1)100-200 °C,与云英岩和橄榄岩的蛇纹石化有关,铬铁矿晶粒显示出未改变的核心、中间的铁铬铁矿边缘和外部的磁铁矿边缘;2)500-600 °C,整个铬铁矿晶粒转化为铁铬铁矿,这可能与 Bangur 辉长岩的后期侵入有关。HR-TEM 研究表明,三种铬铁矿类型都具有面心立方结构,而拉曼光谱则表明,铁铬铁矿的结构状态从正常尖晶石结构(I 型)到 II 型逐渐过渡到完全反向尖晶石结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mineralogy and Petrology
Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered. Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信