Lays Adrianne M Trajano-Silva, Simon Ngao Mule, Giuseppe Palmisano
{"title":"Molecular tools to regulate gene expression in Trypanosoma cruzi.","authors":"Lays Adrianne M Trajano-Silva, Simon Ngao Mule, Giuseppe Palmisano","doi":"10.1016/bs.acc.2024.04.008","DOIUrl":null,"url":null,"abstract":"<p><p>Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"120 ","pages":"169-190"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in clinical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acc.2024.04.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.