Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.

Emily Laubscher, Xuefei Wang, Nitzan Razin, Tom Dougherty, Rosalind J Xu, Lincoln Ombelets, Edward Pao, William Graf, Jeffrey R Moffitt, Yisong Yue, David Van Valen
{"title":"Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.","authors":"Emily Laubscher, Xuefei Wang, Nitzan Razin, Tom Dougherty, Rosalind J Xu, Lincoln Ombelets, Edward Pao, William Graf, Jeffrey R Moffitt, Yisong Yue, David Van Valen","doi":"10.1016/j.cels.2024.04.006","DOIUrl":null,"url":null,"abstract":"<p><p>Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 5","pages":"475-482.e6"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.04.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.

Abstract Image

利用弱监督深度学习为基于图像的空间转录组学提供精确的单分子点检测。
基于图像的空间转录组学方法能够利用空间信息测量转录组尺度的基因表达,但需要复杂的人工调整分析管道。我们介绍的 Polaris 是一种基于图像的空间转录组学分析流水线,它将用于细胞分割和斑点检测的深度学习模型与概率基因解码器相结合,可准确量化单细胞基因表达。Polaris 提供了一个统一的交钥匙解决方案,用于分析来自多重误差校正 FISH (MERFISH)、连续荧光原位杂交 (seqFISH) 或原位 RNA 测序 (ISS) 实验的空间转录组学数据。Polaris可通过DeepCell软件库(https://github.com/vanvalenlab/deepcell-spots)和https://www.deepcell.org。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信