{"title":"Liquid exfoliation of molybdenum metallenes for non-inflammatory photothermal therapy of tumors.","authors":"Chenxin Lu, Xiang Huang, Zhaoying Jin, Junwei Deng, Zhengbao Zha, Zhaohua Miao","doi":"10.1039/d4tb00525b","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects <i>in vitro</i>. For <i>in vivo</i> experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5690-5698"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb00525b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects in vitro. For in vivo experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.
肿瘤光热疗法(PTT)过程中出现的组织损伤和细胞死亡会诱发炎症反应,从而不利于肿瘤治疗。在这里,超薄钼金属纳米片的厚度为体外实验的0.5毫米。在体内实验中,4T1肿瘤被消融,而与炎症相关的细胞因子水平没有明显增加,这表明PTT诱导的炎症反应受到了金属钼纳米片抗炎特性的抑制。此外,茂金属纳米片还具有良好的分散性和生物相容性,有利于生物医学应用。这项工作介绍了茂金属作为有望用于肿瘤非炎症性 PTT 的热疗剂。