In silico evidence that substitution of glycine for valine (p.G8V) in a common variant of TMPRSS2 isoform 1 increases accessibility to an endocytic signal: Implication for SARS-cov-2 entry into host cells and susceptibility to COVID-19
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Matteo Calcagnile , Fabrizio Damiano , Giambattista Lobreglio , Luisa Siculella , Maria Pia Bozzetti , Patricia Forgez , Alexandra Malgoyre , Nicolas Libert , Cecilia Bucci , Marco Alifano , Pietro Alifano
{"title":"In silico evidence that substitution of glycine for valine (p.G8V) in a common variant of TMPRSS2 isoform 1 increases accessibility to an endocytic signal: Implication for SARS-cov-2 entry into host cells and susceptibility to COVID-19","authors":"Matteo Calcagnile , Fabrizio Damiano , Giambattista Lobreglio , Luisa Siculella , Maria Pia Bozzetti , Patricia Forgez , Alexandra Malgoyre , Nicolas Libert , Cecilia Bucci , Marco Alifano , Pietro Alifano","doi":"10.1016/j.biochi.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>The TMPRSS2 protease plays a key role in the entry of the SARS-CoV-2 into cells. The <em>TMPRSS2</em> gene is highly polymorphic in humans, and some polymorphisms may affect the susceptibility to COVID-19 or disease severity. rs75603675 (c.23G > T) is a missense variant that causes the replacement of glycine with valine at position 8 (p.G8V) in the TMPRSS2 isoform 1. According to GnomAD v4.0.0 database, the allele frequency of the rs75603675 on a global scale is 38.10 %, and range from 0.92 % in East Asian to 40.77 % in non-Finnish European (NFE) population. We analyzed the occurrence of the rs75603675 in two cohorts of patients, the first with severe/critical COVID-19 enrolled in a French hospital (42 patients), and the second with predominantly asymptomatic/pauci-symptomatic/mild COVID-19 enrolled in an Italian hospital (69 patients). We found that the <em>TMPRSS2</em>-c.23T minor allele frequency was similar in the two cohorts, 46.43 % and 46.38 %, respectively, and higher than the frequency in the NFE population (40.77 %). Chi-square test provided significant results (p < 0.05) when the genotype data (<em>TMPRSS2</em>-c.23T/c.23T homozygotes + <em>TMPRSS2</em>-c.23G/c.23T heterozygotes vs. <em>TMPRSS2</em>-c.23G/c.23G homozygotes) of the two patient groups were pooled and compared to the expected data for the NFE population, suggesting a possible pathogenetic mechanism of the p.G8V substitution. We explored the possible effects of the p.G8V substitution and found that the N-terminal region of the TMPRSS2 isoform 1 contains a signal for clathrin/AP-2-dependent endocytosis. <em>In silico</em> analysis predicted that the p.G8V substitution may increase the accessibility to the endocytic signal, which could help SARS-CoV-2 enter cells.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000981","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The TMPRSS2 protease plays a key role in the entry of the SARS-CoV-2 into cells. The TMPRSS2 gene is highly polymorphic in humans, and some polymorphisms may affect the susceptibility to COVID-19 or disease severity. rs75603675 (c.23G > T) is a missense variant that causes the replacement of glycine with valine at position 8 (p.G8V) in the TMPRSS2 isoform 1. According to GnomAD v4.0.0 database, the allele frequency of the rs75603675 on a global scale is 38.10 %, and range from 0.92 % in East Asian to 40.77 % in non-Finnish European (NFE) population. We analyzed the occurrence of the rs75603675 in two cohorts of patients, the first with severe/critical COVID-19 enrolled in a French hospital (42 patients), and the second with predominantly asymptomatic/pauci-symptomatic/mild COVID-19 enrolled in an Italian hospital (69 patients). We found that the TMPRSS2-c.23T minor allele frequency was similar in the two cohorts, 46.43 % and 46.38 %, respectively, and higher than the frequency in the NFE population (40.77 %). Chi-square test provided significant results (p < 0.05) when the genotype data (TMPRSS2-c.23T/c.23T homozygotes + TMPRSS2-c.23G/c.23T heterozygotes vs. TMPRSS2-c.23G/c.23G homozygotes) of the two patient groups were pooled and compared to the expected data for the NFE population, suggesting a possible pathogenetic mechanism of the p.G8V substitution. We explored the possible effects of the p.G8V substitution and found that the N-terminal region of the TMPRSS2 isoform 1 contains a signal for clathrin/AP-2-dependent endocytosis. In silico analysis predicted that the p.G8V substitution may increase the accessibility to the endocytic signal, which could help SARS-CoV-2 enter cells.