{"title":"The robustness of phylogenetic diversity indices to extinctions.","authors":"Kerry Manson","doi":"10.1007/s00285-024-02098-5","DOIUrl":null,"url":null,"abstract":"<p><p>Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102419/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02098-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Phylogenetic diversity indices provide a formal way to apportion evolutionary history amongst living species. Understanding the properties of these measures is key to determining their applicability in conservation biology settings. In this work, we investigate some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606-615, 2023). In that paper, it is shown that under certain extinction scenarios, the ranking of the surviving species by their Fair Proportion index scores may be the complete reverse of their ranking beforehand. Our main results here show that this behaviour extends to a large class of phylogenetic diversity indices, including the Equal-Splits index. We also provide a necessary condition for reversals of Fair Proportion rankings to occur on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific examples of rooted phylogenetic trees displaying these behaviours are given and the impact of our results on the use of phylogenetic diversity indices more generally is discussed.