Smart Multifunctional Nanoparticles in Cancer Theranostics: Progress and Prospect.

Q2 Pharmacology, Toxicology and Pharmaceutics
Dipanjan Karati, Swarupananda Mukherjee, Ayon Dutta, Dipanjana Ash, Shayeri Chatterjee Ganguly, Apurbaa Acharya, Biswajit Basu
{"title":"Smart Multifunctional Nanoparticles in Cancer Theranostics: Progress and Prospect.","authors":"Dipanjan Karati, Swarupananda Mukherjee, Ayon Dutta, Dipanjana Ash, Shayeri Chatterjee Ganguly, Apurbaa Acharya, Biswajit Basu","doi":"10.2174/0122117385304258240427054724","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Worldwide, cancer is the second most common cause of death. Chemotherapy and other traditional cancer treatments have toxicities that affect normal cells in addition to their intended targets, necessitating the development of novel approaches to enhance cell-specific targeting.</p><p><strong>Methods: </strong>The present work summarizes the scientific information on nanoparticles in cancer theranostics to provide a comprehensive insight into the preventive and therapeutic potential of nanoparticles in cancer. Scopus, PubMed, Science Direct, and Google Scholar databases are searched to collect all the recent (2015-2023) scientific information on smart multifunctional nanoparticles using the terms nanotechnology, cancer theranostics, and polymer.</p><p><strong>Results: </strong>The use of nanomaterials as chemical biology tools in cancer theranostics has been thoroughly investigated. They demonstrate expanded uses in terms of stability, biocompatibility, and enhanced cell permeability, enabling precision targeting and ameliorating the drawbacks of conventional cancer treatments. The nano platform presents a fascinating chance to acquire multifunctionality and targeting techniques. The production of smart nanomaterials, specifically with regard to the advent of nanotechnology, has revolutionized the diagnosis and treatment of cancer. The capability of nanoparticles to functionalize with a variety of biosubstrates, including aptamers, antibodies, DNA, and RNA, and their broad surface area allow them to encapsulate a huge number of molecules, contributing to their theranostic effect. Comparatively speaking, economical, easily produced, and less toxic nanomaterials formed from biological sources are thought to have benefits over those made using conventional processes.</p><p><strong>Conclusion: </strong>The present study highlights the uses of several nanoparticles (NPs), and describes numerous cancer theranostics methodologies. The benefits and difficulties preventing their adoption in cancer treatment and diagnostic applications are also critically reviewed. The use of smart nanomaterials, according to this review's findings, can considerably advance cancer theranostics and open up new avenues for tumor detection and treatment.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385304258240427054724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Worldwide, cancer is the second most common cause of death. Chemotherapy and other traditional cancer treatments have toxicities that affect normal cells in addition to their intended targets, necessitating the development of novel approaches to enhance cell-specific targeting.

Methods: The present work summarizes the scientific information on nanoparticles in cancer theranostics to provide a comprehensive insight into the preventive and therapeutic potential of nanoparticles in cancer. Scopus, PubMed, Science Direct, and Google Scholar databases are searched to collect all the recent (2015-2023) scientific information on smart multifunctional nanoparticles using the terms nanotechnology, cancer theranostics, and polymer.

Results: The use of nanomaterials as chemical biology tools in cancer theranostics has been thoroughly investigated. They demonstrate expanded uses in terms of stability, biocompatibility, and enhanced cell permeability, enabling precision targeting and ameliorating the drawbacks of conventional cancer treatments. The nano platform presents a fascinating chance to acquire multifunctionality and targeting techniques. The production of smart nanomaterials, specifically with regard to the advent of nanotechnology, has revolutionized the diagnosis and treatment of cancer. The capability of nanoparticles to functionalize with a variety of biosubstrates, including aptamers, antibodies, DNA, and RNA, and their broad surface area allow them to encapsulate a huge number of molecules, contributing to their theranostic effect. Comparatively speaking, economical, easily produced, and less toxic nanomaterials formed from biological sources are thought to have benefits over those made using conventional processes.

Conclusion: The present study highlights the uses of several nanoparticles (NPs), and describes numerous cancer theranostics methodologies. The benefits and difficulties preventing their adoption in cancer treatment and diagnostic applications are also critically reviewed. The use of smart nanomaterials, according to this review's findings, can considerably advance cancer theranostics and open up new avenues for tumor detection and treatment.

癌症治疗中的智能多功能纳米粒子:进展与展望》。
背景:在全球范围内,癌症是第二大常见死因。化疗和其他传统癌症治疗方法的毒性除了影响预定靶点外,还会影响正常细胞,因此有必要开发新型方法来增强细胞特异性靶向作用:本研究总结了纳米粒子在癌症治疗学方面的科学信息,以全面了解纳米粒子在癌症预防和治疗方面的潜力。本研究通过Scopus、PubMed、Science Direct和Google Scholar数据库,以纳米技术、癌症治疗学和聚合物为关键词,收集了近期(2015-2023年)有关智能多功能纳米粒子的所有科学信息:纳米材料作为化学生物学工具在癌症治疗学中的应用已得到深入研究。纳米材料在稳定性、生物相容性和增强细胞渗透性等方面的用途得到了扩展,实现了精确靶向,改善了传统癌症治疗方法的缺点。纳米平台为获得多功能性和靶向技术提供了迷人的机会。智能纳米材料的生产,特别是纳米技术的出现,彻底改变了癌症的诊断和治疗。纳米粒子能够与多种生物基质(包括适配体、抗体、DNA 和 RNA)进行功能化,其宽广的表面积使其能够封装大量分子,从而提高了治疗效果。相对而言,利用生物资源制成的纳米材料经济实惠、易于生产且毒性较低,被认为比利用传统工艺制成的纳米材料更有优势:本研究强调了几种纳米粒子(NPs)的用途,并介绍了多种癌症治疗方法。本研究还对采用纳米粒子治疗和诊断癌症的益处和困难进行了评论。根据本综述的研究结果,使用智能纳米材料可以大大推进癌症治疗学的发展,并为肿瘤检测和治疗开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信