Ethan Waisberg , Joshua Ong , Sharif Amit Kamran , Mouayad Masalkhi , Phani Paladugu , Nasif Zaman , Andrew G. Lee , Alireza Tavakkoli
{"title":"Generative artificial intelligence in ophthalmology","authors":"Ethan Waisberg , Joshua Ong , Sharif Amit Kamran , Mouayad Masalkhi , Phani Paladugu , Nasif Zaman , Andrew G. Lee , Alireza Tavakkoli","doi":"10.1016/j.survophthal.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>Generative artificial intelligence (AI) has revolutionized medicine over the past several years. A generative adversarial network (GAN) is a deep learning framework that has become a powerful technique in medicine, particularly in ophthalmology for image analysis. In this paper we review the current ophthalmic literature involving GANs, and highlight key contributions in the field. We briefly touch on ChatGPT, another application of generative AI, and its potential in ophthalmology. We also explore the potential uses for GANs in ocular imaging, with a specific emphasis on 3 primary domains: image enhancement, disease identification, and generating of synthetic data. PubMed, Ovid MEDLINE, Google Scholar were searched from inception to October 30, 2022, to identify applications of GAN in ophthalmology. A total of 40 papers were included in this review. We cover various applications of GANs in ophthalmic-related imaging including optical coherence tomography, orbital magnetic resonance imaging, fundus photography, and ultrasound; however, we also highlight several challenges that resulted in the generation of inaccurate and atypical results during certain iterations. Finally, we examine future directions and considerations for generative AI in ophthalmology.</div></div>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":"70 1","pages":"Pages 1-11"},"PeriodicalIF":5.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039625724000444","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Generative artificial intelligence (AI) has revolutionized medicine over the past several years. A generative adversarial network (GAN) is a deep learning framework that has become a powerful technique in medicine, particularly in ophthalmology for image analysis. In this paper we review the current ophthalmic literature involving GANs, and highlight key contributions in the field. We briefly touch on ChatGPT, another application of generative AI, and its potential in ophthalmology. We also explore the potential uses for GANs in ocular imaging, with a specific emphasis on 3 primary domains: image enhancement, disease identification, and generating of synthetic data. PubMed, Ovid MEDLINE, Google Scholar were searched from inception to October 30, 2022, to identify applications of GAN in ophthalmology. A total of 40 papers were included in this review. We cover various applications of GANs in ophthalmic-related imaging including optical coherence tomography, orbital magnetic resonance imaging, fundus photography, and ultrasound; however, we also highlight several challenges that resulted in the generation of inaccurate and atypical results during certain iterations. Finally, we examine future directions and considerations for generative AI in ophthalmology.
期刊介绍:
Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.