Analysis of the metabolic profile of humans naturally exposed to RF-EM radiation.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Neel Mani Rangesh, Arun Kumar Malaisamy, Nitesh Kumar, Sanjay Kumar
{"title":"Analysis of the metabolic profile of humans naturally exposed to RF-EM radiation.","authors":"Neel Mani Rangesh, Arun Kumar Malaisamy, Nitesh Kumar, Sanjay Kumar","doi":"10.1007/s11306-024-02121-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The world is experiencing exponential growth in communication, especially wireless communication. Wireless connectivity has recently become a part of everyone's daily life. Recent developments in low-cost, low-power, and miniature devices contribute to a significant rise in radiofrequency-electromagnetic field (RF-EM) radiation exposure in our environment, raising concern over its effect on biological systems. The inconsistent and conflicting research results make it difficult to draw definite conclusions about how RF-EM radiation affects living things.</p><p><strong>Objectives: </strong>This study identified two micro-environments based on their level of exposure to cellular RF-EM radiation, one with significantly less exposure and another with very high exposure to RF-EM radiation. Emphasis is given to studying the metabolites in the urine samples of humans naturally exposed to these two different microenvironments to understand short-term metabolic dysregulations.</p><p><strong>Methods: </strong>Untargeted <sup>1</sup>H NMR spectroscopy was employed for metabolomics analyses to identify dysregulated metabolites. A total of 60 subjects were recruited with 5 ml urine samples each. These subjects were divided into two groups: one highly exposed to RF-EM (n = 30) and the other consisting of low-exposure populations (n = 30).</p><p><strong>Results: </strong>The study found that the twenty-nine metabolites were dysregulated. Among them, 19 were downregulated, and 10 were upregulated. In particular, Glyoxylate and dicarboxylate and the TCA cycle metabolism pathway have been perturbed. The dysregulated metabolites were validated using the ROC curve analysis.</p><p><strong>Conclusion: </strong>Untargeted urine metabolomics was conducted to identify dysregulated metabolites linked to RF-EM radiation exposure. Preliminary findings suggest a connection between oxidative stress and gut microbiota imbalance. However, further research is needed to validate these biomarkers and understand the effects of RF-EM radiation on human health. Further research is needed with a diverse population.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 3","pages":"55"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02121-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The world is experiencing exponential growth in communication, especially wireless communication. Wireless connectivity has recently become a part of everyone's daily life. Recent developments in low-cost, low-power, and miniature devices contribute to a significant rise in radiofrequency-electromagnetic field (RF-EM) radiation exposure in our environment, raising concern over its effect on biological systems. The inconsistent and conflicting research results make it difficult to draw definite conclusions about how RF-EM radiation affects living things.

Objectives: This study identified two micro-environments based on their level of exposure to cellular RF-EM radiation, one with significantly less exposure and another with very high exposure to RF-EM radiation. Emphasis is given to studying the metabolites in the urine samples of humans naturally exposed to these two different microenvironments to understand short-term metabolic dysregulations.

Methods: Untargeted 1H NMR spectroscopy was employed for metabolomics analyses to identify dysregulated metabolites. A total of 60 subjects were recruited with 5 ml urine samples each. These subjects were divided into two groups: one highly exposed to RF-EM (n = 30) and the other consisting of low-exposure populations (n = 30).

Results: The study found that the twenty-nine metabolites were dysregulated. Among them, 19 were downregulated, and 10 were upregulated. In particular, Glyoxylate and dicarboxylate and the TCA cycle metabolism pathway have been perturbed. The dysregulated metabolites were validated using the ROC curve analysis.

Conclusion: Untargeted urine metabolomics was conducted to identify dysregulated metabolites linked to RF-EM radiation exposure. Preliminary findings suggest a connection between oxidative stress and gut microbiota imbalance. However, further research is needed to validate these biomarkers and understand the effects of RF-EM radiation on human health. Further research is needed with a diverse population.

Abstract Image

分析自然暴露于射频-电磁辐射的人体的代谢概况。
引言全球通信,尤其是无线通信正经历着指数级增长。无线连接最近已成为每个人日常生活的一部分。近来,低成本、低功耗和微型设备的发展导致我们环境中的射频电磁场(RF-EM)辐射显著增加,引起了人们对其对生物系统影响的关注。由于研究结果不一致且相互矛盾,因此很难就射频电磁场辐射如何影响生物得出明确的结论:本研究根据细胞射频-电磁辐射的暴露程度确定了两种微环境,一种暴露程度明显较低,另一种暴露程度非常高。重点研究自然暴露在这两种不同微环境中的人体尿液样本中的代谢物,以了解短期代谢失调情况:方法:采用非靶向 1H NMR 光谱进行代谢组学分析,以确定失调的代谢物。共招募了 60 名受试者,每人采集 5 毫升尿样。这些受试者被分为两组:一组高度暴露于射频-电磁场(n = 30),另一组为低暴露人群(n = 30):研究发现,29 种代谢物出现了失调。结果:研究发现,29 种代谢物出现失调,其中 19 种下调,10 种上调。其中,乙醛酸和二羧酸以及 TCA 循环代谢途径受到了干扰。采用 ROC 曲线分析法对失调代谢物进行了验证:结论:通过非靶向尿液代谢组学研究,确定了与射频-电磁辐射照射有关的失调代谢物。初步研究结果表明,氧化应激与肠道微生物群失衡之间存在联系。然而,要验证这些生物标记物并了解射频-电磁辐射对人体健康的影响,还需要进一步的研究。还需要对不同人群进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信