Tubulin glycylation controls ciliary motility through modulation of outer-arm dyneins.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-07-01 Epub Date: 2024-05-17 DOI:10.1091/mbc.E24-04-0154
Tomohiro Kubo, Rinka Sasaki, Toshiyuki Oda
{"title":"Tubulin glycylation controls ciliary motility through modulation of outer-arm dyneins.","authors":"Tomohiro Kubo, Rinka Sasaki, Toshiyuki Oda","doi":"10.1091/mbc.E24-04-0154","DOIUrl":null,"url":null,"abstract":"<p><p>Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel <i>Chlamydomonas</i> mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, <i>ttll3(ex5)</i>, completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the <i>ttll3(ex5)</i> mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on β-tubulin in <i>Chlamydomonas</i>, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of β-tubulin.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-04-0154","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on β-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of β-tubulin.

管蛋白糖基化通过调节外臂动力蛋白控制纤毛运动
管蛋白会发生几种翻译后修饰(PTM),包括谷氨酰化和糖基化。这些 PTM 对纤毛和鞭毛运动的影响尚不清楚。在这里,我们通过研究一种缺乏 TTLL3(一种负责启动糖基化的酶)的新型衣藻突变体,研究了微管蛋白糖基化的作用。细胞和鞭毛的免疫染色显示,糖基化只局限于组成外双联微管的轴丝微管蛋白,而不是中心对微管。此外,还发现 TTLL3 的鞭毛定位依赖于鞭毛内运输。突变体ttll3(ex5)完全缺乏糖基化,因此与野生型菌株相比游泳速度较慢。通过将ttll3(ex5)突变与多种轴突动力蛋白缺乏突变体相结合,我们发现缺乏糖基化并不会影响外臂动力蛋白缺乏突变体的运动能力。利用离体轴突进行的滑动解体试验表明,缺乏糖基化会降低正常轴突的微管滑动速度,但不会降低缺乏外臂动力蛋白的轴突的微管滑动速度。我们最近的研究表明,在衣藻中,乙酰化只发生在β-微管蛋白上,基于这一研究结果,这些发现表明,微管蛋白乙酰化通过调节外臂动力蛋白来控制鞭毛运动,这可能是通过中和β-微管蛋白C端区域谷氨酸残基的负电荷来实现的。(200字)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信