F. Jaime, S. Desbief, J. Silvent, G. Goupil, M. Bernacki, N. Bozzolo, A. Nicolaÿ
{"title":"Study of curtaining effect reduction methods in Inconel 718 using a plasma focused ion beam","authors":"F. Jaime, S. Desbief, J. Silvent, G. Goupil, M. Bernacki, N. Bozzolo, A. Nicolaÿ","doi":"10.1111/jmi.13320","DOIUrl":null,"url":null,"abstract":"<p>The curtaining effect is a common challenge in focused ion beam (FIB) surface preparation. This study investigates methods to reduce this effect during plasma FIB milling of Inconel 718 (nickel-based superalloy). Platinum deposition, silicon mask and XeF<sub>2</sub> gas injection were explored as potential solutions. These methods were evaluated for two ion beam current conditions; a high ion beam intensity condition (30 kV–1 µA) and a medium one (30 kV–100 nA) and their impact on curtaining reduction and resulting cross-section quality was assessed quantitatively thanks to topographic measurements done by atomic force microscopy (AFM). XeF<sub>2</sub> assistance notably improved cross-section quality at medium current level. Pt deposition and Si mask individually mitigated the curtaining effect, with greater efficacy at 100 nA. Both methods also contributed to reducing cross-section curvature, with the Si mask outperforming Pt deposition. However, combining Pt deposition and Si mask with XeF<sub>2</sub> injection led to deterioration of these protective layers and the reappearance of the curtaining effect after a quite short exposure time.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The curtaining effect is a common challenge in focused ion beam (FIB) surface preparation. This study investigates methods to reduce this effect during plasma FIB milling of Inconel 718 (nickel-based superalloy). Platinum deposition, silicon mask and XeF2 gas injection were explored as potential solutions. These methods were evaluated for two ion beam current conditions; a high ion beam intensity condition (30 kV–1 µA) and a medium one (30 kV–100 nA) and their impact on curtaining reduction and resulting cross-section quality was assessed quantitatively thanks to topographic measurements done by atomic force microscopy (AFM). XeF2 assistance notably improved cross-section quality at medium current level. Pt deposition and Si mask individually mitigated the curtaining effect, with greater efficacy at 100 nA. Both methods also contributed to reducing cross-section curvature, with the Si mask outperforming Pt deposition. However, combining Pt deposition and Si mask with XeF2 injection led to deterioration of these protective layers and the reappearance of the curtaining effect after a quite short exposure time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.