{"title":"Effect of coil diameter on water disinfection efficiency in a helical photoreactor using ultraviolet-C light emitting diodes.","authors":"Chien-Ping Wang, Yu-Cheng Chang, Yung-Hsiang Lin, Qiang Jia","doi":"10.1080/09593330.2024.2354122","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the disinfection efficiency of a photoreactor equipped with a helical water flow channel and ultraviolet-C (UV-C) light emitting diodes (LEDs). Theoretical simulations and biodosimetry tests were conducted to investigate the effects of coil diameter and flow rate on the reactor's performance in inactivating <i>Escherichia coli</i>. The interplay between hydrodynamics and UV radiation was analyzed to determine the UV fluence absorbed by the microbes. The simulations revealed that, primarily due to the specific radiation pattern of the UV LEDs, the coil diameter strongly influenced the distribution of irradiance in the water and the UV fluence received by microbes. The experimental results indicated that the photoreactor achieved the highest inactivation value of 2.8 log when the coil diameter was 48 mm for a flow rate of 40 mL/min; this log value was superior to those for coil diameters of 16, 32, 64, and 80 mm by approximately 1.9, 0.4, 0.5, and 0.7 log units, respectively. This optimal coil diameter leading to the maximal UV irradiance and the highest degree of irradiance uniformity along the flow channel. This study offers design guidelines for constructing a high-efficiency water disinfection reactor with a helical flow channel configuration.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"279-288"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2354122","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the disinfection efficiency of a photoreactor equipped with a helical water flow channel and ultraviolet-C (UV-C) light emitting diodes (LEDs). Theoretical simulations and biodosimetry tests were conducted to investigate the effects of coil diameter and flow rate on the reactor's performance in inactivating Escherichia coli. The interplay between hydrodynamics and UV radiation was analyzed to determine the UV fluence absorbed by the microbes. The simulations revealed that, primarily due to the specific radiation pattern of the UV LEDs, the coil diameter strongly influenced the distribution of irradiance in the water and the UV fluence received by microbes. The experimental results indicated that the photoreactor achieved the highest inactivation value of 2.8 log when the coil diameter was 48 mm for a flow rate of 40 mL/min; this log value was superior to those for coil diameters of 16, 32, 64, and 80 mm by approximately 1.9, 0.4, 0.5, and 0.7 log units, respectively. This optimal coil diameter leading to the maximal UV irradiance and the highest degree of irradiance uniformity along the flow channel. This study offers design guidelines for constructing a high-efficiency water disinfection reactor with a helical flow channel configuration.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current