Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro.

IF 7.2 1区 医学 Q1 TOXICOLOGY
Kirsty Meldrum, Stephen J Evans, Michael J Burgum, Shareen H Doak, Martin J D Clift
{"title":"Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro.","authors":"Kirsty Meldrum, Stephen J Evans, Michael J Burgum, Shareen H Doak, Martin J D Clift","doi":"10.1186/s12989-024-00584-8","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm<sup>2</sup> of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the \"inflamed\" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm<sup>2</sup>). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm<sup>2</sup>) in the \"inflamed\" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-024-00584-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.

确定室内空气污染对体外肺泡上皮屏障健康模型和炎症模型的毒理影响。
随着人们在室内(如家中、办公室、学校和交通场所)度过的时间越来越长,室内空气污染物(IAP)的暴露量近来有所增加。人们对健康人群暴露于更多室内空气污染物的情况知之甚少,对患有过敏性呼吸道疾病的人群更是如此。因此,本研究的目的是采用一种特性良好的人体肺泡上皮屏障体外模型(A549 + PMA 分化的 THP-1,与 IL-13、IL-5 和 IL-4 培养或不与 IL-13、IL-5 和 IL-4 培养),来确定标准化室内微粒(NIST 2583)对健康肺部模型和 II 型(受 IL-13、IL-5 和 IL-4 刺激)炎症反应模型(如哮喘)的影响。我们使用文献中的浓度和适合环境的暴露量,分别研究了 232、464 和 608ng/cm2 的 NIST 2583。然后在两种模型暴露 24 小时后对其膜完整性(蓝色葡聚糖)、存活率(胰蓝)、遗传毒性(微核(Mn)检测)和(促)/(抗)炎症效应(IL-6、IL-8、IL-33、IL-10)进行评估。模型暴露于与生理相关的气溶胶方法(VitroCell Cloud 12 暴露系统)中。两种模型暴露于任何浓度的 NIST 2583 时,锰频率或膜完整性均未发生变化。总之,这些结果表明 IAP 有可能导致 II 型反应的发生,并加剧原有的过敏状况。此外,这些数据还表明,在研究 IAP 对健康的潜在影响时,必须考虑不健康的个体。数据还强调,即使是健康人群,在接触 IAP 后,这些微粒也有可能诱发 II 型反应,并引发免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.90
自引率
4.00%
发文量
69
审稿时长
6 months
期刊介绍: Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信