Exploring the mechanism of dendrobine in treating metabolic associated fatty liver disease based on network pharmacology and experimental validation.

IF 2.7 3区 生物学
Feng Li, Jialin Wu, Ye Zhu, Xiaoyan Zhang, Miao Wang, Shigao Zhou
{"title":"Exploring the mechanism of dendrobine in treating metabolic associated fatty liver disease based on network pharmacology and experimental validation.","authors":"Feng Li, Jialin Wu, Ye Zhu, Xiaoyan Zhang, Miao Wang, Shigao Zhou","doi":"10.1186/s41065-024-00322-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed.</p><p><strong>Results: </strong>The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels.</p><p><strong>Conclusion: </strong>Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-024-00322-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed.

Results: The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels.

Conclusion: Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.

基于网络药理学和实验验证,探索石斛碱治疗代谢相关性脂肪肝的机制。
背景:本研究探讨了金钗石斛中的主要生物活性化合物石斛碱治疗代谢相关性脂肪肝(MASLD)的机制。利用网络药理学结合实验验证,对石斛碱治疗代谢相关性脂肪肝的临床疗效进行了评估和分析:研究结果表明,使用金钗石斛治疗 MASLD 患者的肝功能有明显改善。网络药理学确定了一些关键靶点,如过氧化物酶体增殖激活受体γ(PPARG)、白细胞介素6(IL6)、肿瘤坏死因子(TNF)、白细胞介素1β(IL1B)和AKT丝氨酸/苏氨酸激酶1(AKT1),分子对接证实了它们之间的相互作用。此外,石斛碱还能显著降低棕榈酸处理的 HepG2 细胞中的谷丙转氨酶和谷草转氨酶水平,表明其具有保肝特性,并能通过降低丙二醛(MDA)水平和提高超氧化物歧化酶(SOD)水平来改善氧化应激:结论:铁皮石斛碱通过调节炎症和免疫反应以及影响脂质代谢,可能通过下调 TNF、IL6、IL1B 等炎症介质以及抑制 AKT1 和信号转导和激活转录 3 (STAT3),减轻 MASLD 的肝损伤。这项研究为石斛碱应用于 MASLD 治疗提供了理论依据,凸显了其作为一种治疗药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信