{"title":"Expression of octopamine/tyramine receptors and immune regulation in Litopenaeus vannamei under acute and chronic thermal stress","authors":"Li-Yang Hsu , Hsin-Wei Kuo , Winton Cheng","doi":"10.1016/j.dci.2024.105195","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the impact of hyperthermal (34 °C) and hypothermal (14 °C) stress on the expression of the octopamine/tyramine receptor (LvOA/TA-R) and immune parameters in <em>Litopenaeus vannamei</em>, which is a species critical to the aquaculture industry. Given the sensitivity of aquatic organisms to climate change, understanding the physiological and immune responses of <em>L. vannamei</em> to temperature variations is essential for developing strategies to mitigate adverse effects. This research focuses on the immune response and expression changes of LvOA/TA-R under acute (0.5, 1, and 2 h) and chronic (24, 72, and 168 h) thermal stress conditions. Our findings reveal that thermal stress induces changes in LvOA/TA-R expression and impacts immune responses. Immune parameters such as total haemocyte count, differential haemocyte count, phenoloxidase activity, respiratory bursts, lysozyme activity, clearance efficiency, and phagocytosis exhibited a general trend of significant decline under the stress conditions. LvOA/TA-R had a higher expression in haemocyte under hyperthermal stress. The study elucidated that thermal stress modifies the expression of the LvOA/TA-R and diminishes immune functionality in <em>L. vannamei</em>, underscoring the potential influence of climate change on industry.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of hyperthermal (34 °C) and hypothermal (14 °C) stress on the expression of the octopamine/tyramine receptor (LvOA/TA-R) and immune parameters in Litopenaeus vannamei, which is a species critical to the aquaculture industry. Given the sensitivity of aquatic organisms to climate change, understanding the physiological and immune responses of L. vannamei to temperature variations is essential for developing strategies to mitigate adverse effects. This research focuses on the immune response and expression changes of LvOA/TA-R under acute (0.5, 1, and 2 h) and chronic (24, 72, and 168 h) thermal stress conditions. Our findings reveal that thermal stress induces changes in LvOA/TA-R expression and impacts immune responses. Immune parameters such as total haemocyte count, differential haemocyte count, phenoloxidase activity, respiratory bursts, lysozyme activity, clearance efficiency, and phagocytosis exhibited a general trend of significant decline under the stress conditions. LvOA/TA-R had a higher expression in haemocyte under hyperthermal stress. The study elucidated that thermal stress modifies the expression of the LvOA/TA-R and diminishes immune functionality in L. vannamei, underscoring the potential influence of climate change on industry.