{"title":"Ionic reverberation modulates the cellular fate of CD8+tissue resident memory T cells (TRMs) in patients with renal cell carcinoma: A novel mechanism","authors":"Ashu Singh , Saumitra Dey Choudhury , Prabhjot Singh , Vishwendra Vikram Singh , Som Nath Singh , Alpana Sharma","doi":"10.1016/j.clim.2024.110256","DOIUrl":null,"url":null,"abstract":"<div><p>In metastatic renal cell carcinoma (mRCC), existing treatments including checkpoint inhibitors are failed to cure and/or prevent recurrence of the disease. Therefore, in-depth understanding of tumor tissue resident memory T cells (TRMs) dysfunction are necessitated to enrich efficacy of immunotherapies and increasing disease free survival in treated patients. In patients, we observed dysregulation of K<sup>+</sup>, Ca<sup>2+</sup>, Na<sup>2+</sup> and Zn<sup>2+</sup> ion channels leads to excess infiltration of their respective ions in tumor TRMs, thus ionic gradients are disturbed and cells became hyperpolarized. Moreover, overloaded intramitochondrial calcium caused mitochondrial depolarization and trigger apoptosis of tumor TRMs. Decreased prevalence of activated tumor TRMs reflected our observations. Furthermore, disruptions in ionic concentrations impaired the functional activities and/or suppressed anti-tumor action of circulating and tumor TRMs in RCC. Collectively, these findings revealed novel mechanism behind dysfunctionality of tumor TRMs. Implicating enrichment of activated TRMs within tumor would be beneficial for better management of RCC patients.</p></div>","PeriodicalId":10392,"journal":{"name":"Clinical immunology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521661624003656","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In metastatic renal cell carcinoma (mRCC), existing treatments including checkpoint inhibitors are failed to cure and/or prevent recurrence of the disease. Therefore, in-depth understanding of tumor tissue resident memory T cells (TRMs) dysfunction are necessitated to enrich efficacy of immunotherapies and increasing disease free survival in treated patients. In patients, we observed dysregulation of K+, Ca2+, Na2+ and Zn2+ ion channels leads to excess infiltration of their respective ions in tumor TRMs, thus ionic gradients are disturbed and cells became hyperpolarized. Moreover, overloaded intramitochondrial calcium caused mitochondrial depolarization and trigger apoptosis of tumor TRMs. Decreased prevalence of activated tumor TRMs reflected our observations. Furthermore, disruptions in ionic concentrations impaired the functional activities and/or suppressed anti-tumor action of circulating and tumor TRMs in RCC. Collectively, these findings revealed novel mechanism behind dysfunctionality of tumor TRMs. Implicating enrichment of activated TRMs within tumor would be beneficial for better management of RCC patients.
期刊介绍:
Clinical Immunology publishes original research delving into the molecular and cellular foundations of immunological diseases. Additionally, the journal includes reviews covering timely subjects in basic immunology, along with case reports and letters to the editor.