Bioinformatics proved the existence of potential hub genes activating autophagy to participate in cartilage degeneration in osteonecrosis of the femoral head
{"title":"Bioinformatics proved the existence of potential hub genes activating autophagy to participate in cartilage degeneration in osteonecrosis of the femoral head","authors":"Yingkang Zhu, Xianxuan Wang, Ruiyu Liu","doi":"10.1007/s10735-024-10200-w","DOIUrl":null,"url":null,"abstract":"<div><p>The obvious degeneration of articular cartilage occurs in the late stage of osteonecrosis of the femoral head (ONFH), which aggravates the condition of ONFH. This study aimed to demonstrate aberrant activation of autophagy processes in ONFH chondrocytes through bioinformatics and to predict and identify relevant hub genes and pathways. Differentially expressed genes (DEGs) were identified using R software in the GSE74089 dataset from the GEO database. DEGs were crossed with the Human Autophagy Database (HADb) autophagy genes to screen out autophagy-related differential genes (AT-DEGs). GSEA, GSVA, GO, and KEGG pathway enrichment analyses of AT-DEGs were performed. The STRING database was used to analyze the protein-protein interaction (PPI) of the AT-DEGs network, and the MCODE and CytoHubba plugin in the Cytoscape software was used to analyze the key gene cluster module and screen the hub genes. The PPI network of hub genes was constructed using the GeneMANIA database, and functional enrichment and gene connectivity categories were analyzed. The expression levels of hub genes of related genes in the ONFH patients were verified in the dataset GSE123568, and the protein expression was verified by immunohistochemistry in tissues. The analysis of DEGs revealed abnormal autophagy in ONFH cartilage. AT-DEGs in ONFH have special enrichment in macroautophagy, autophagosome membrane, and phosphatidylinositol-3-phosphate binding. In the GSE123568 dataset, it was also found that ATG2B, ATG4B, and UVRAG were all significantly upregulated in ONFH patients. By immunohistochemistry, it was verified that ATG2B, ATG4B, and UVRAG were significantly overexpressed. These three genes regulate the occurrence and extension of autophagosomes through the PI3KC3C pathway. Finally, we determined that chondrocytes in ONFH undergo positive regulation of autophagy through the corresponding pathways involved in three genes: ATG2B, ATG4B, and UVRAG.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10200-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The obvious degeneration of articular cartilage occurs in the late stage of osteonecrosis of the femoral head (ONFH), which aggravates the condition of ONFH. This study aimed to demonstrate aberrant activation of autophagy processes in ONFH chondrocytes through bioinformatics and to predict and identify relevant hub genes and pathways. Differentially expressed genes (DEGs) were identified using R software in the GSE74089 dataset from the GEO database. DEGs were crossed with the Human Autophagy Database (HADb) autophagy genes to screen out autophagy-related differential genes (AT-DEGs). GSEA, GSVA, GO, and KEGG pathway enrichment analyses of AT-DEGs were performed. The STRING database was used to analyze the protein-protein interaction (PPI) of the AT-DEGs network, and the MCODE and CytoHubba plugin in the Cytoscape software was used to analyze the key gene cluster module and screen the hub genes. The PPI network of hub genes was constructed using the GeneMANIA database, and functional enrichment and gene connectivity categories were analyzed. The expression levels of hub genes of related genes in the ONFH patients were verified in the dataset GSE123568, and the protein expression was verified by immunohistochemistry in tissues. The analysis of DEGs revealed abnormal autophagy in ONFH cartilage. AT-DEGs in ONFH have special enrichment in macroautophagy, autophagosome membrane, and phosphatidylinositol-3-phosphate binding. In the GSE123568 dataset, it was also found that ATG2B, ATG4B, and UVRAG were all significantly upregulated in ONFH patients. By immunohistochemistry, it was verified that ATG2B, ATG4B, and UVRAG were significantly overexpressed. These three genes regulate the occurrence and extension of autophagosomes through the PI3KC3C pathway. Finally, we determined that chondrocytes in ONFH undergo positive regulation of autophagy through the corresponding pathways involved in three genes: ATG2B, ATG4B, and UVRAG.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.