Scaling the Electrochemical Conversion of CO2 to CO

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Kai Han, Ben C. Rowley, Maarten P. Schellekens, Sander Brugman, Michiel P. de Heer, Lucas P. S. Keyzer and Paul J. Corbett*, 
{"title":"Scaling the Electrochemical Conversion of CO2 to CO","authors":"Kai Han,&nbsp;Ben C. Rowley,&nbsp;Maarten P. Schellekens,&nbsp;Sander Brugman,&nbsp;Michiel P. de Heer,&nbsp;Lucas P. S. Keyzer and Paul J. Corbett*,&nbsp;","doi":"10.1021/acsenergylett.4c00936","DOIUrl":null,"url":null,"abstract":"<p >The key challenges for the industrial electrolysis of CO<sub>2</sub> into CO are the low CO<sub>2</sub> conversion, restricted scale-up, and poor long-term operation. Systematic process design and electrolyzer engineering are essential for addressing these challenges and exploiting the full potential of commercial CO<sub>2</sub> electrolysis. In this study, we employed a bipolar membrane (BPM) in a pressurized electrolyzer with a 25 cm<sup>2</sup> active area to achieve a maximum FE<sub>CO</sub> of 93% with a cell voltage of 3.5 V and a maximum CO<sub>2</sub> single-pass conversion of 70% without detecting CO<sub>2</sub> crossover. In addition, we upscaled the system active area from 5 to 250 cm<sup>2</sup> and showed that this increase did not result in a loss of performance. In particular, the performance on the pressurized 100 cm<sup>2</sup> electrolyzer established an average FE<sub>CO</sub> of 85% with a CO<sub>2</sub> single-pass conversion of 60% for over 120 h. This provides practical approaches for transitioning from laboratory-scale to industrial-scale electrolysis.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00936","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The key challenges for the industrial electrolysis of CO2 into CO are the low CO2 conversion, restricted scale-up, and poor long-term operation. Systematic process design and electrolyzer engineering are essential for addressing these challenges and exploiting the full potential of commercial CO2 electrolysis. In this study, we employed a bipolar membrane (BPM) in a pressurized electrolyzer with a 25 cm2 active area to achieve a maximum FECO of 93% with a cell voltage of 3.5 V and a maximum CO2 single-pass conversion of 70% without detecting CO2 crossover. In addition, we upscaled the system active area from 5 to 250 cm2 and showed that this increase did not result in a loss of performance. In particular, the performance on the pressurized 100 cm2 electrolyzer established an average FECO of 85% with a CO2 single-pass conversion of 60% for over 120 h. This provides practical approaches for transitioning from laboratory-scale to industrial-scale electrolysis.

Abstract Image

Abstract Image

将二氧化碳电化学转化为 CO
将二氧化碳电解为一氧化碳的工业化生产面临的主要挑战是二氧化碳转化率低、规模化生产受限以及长期运行不佳。系统的工艺设计和电解槽工程对于应对这些挑战和充分挖掘商业 CO2 电解的潜力至关重要。在本研究中,我们在活性面积为 25 cm2 的加压电解槽中采用了双极膜 (BPM),在电池电压为 3.5 V 时,FECO 的最大值为 93%,二氧化碳单程转化率的最大值为 70%,且未检测到二氧化碳交叉。此外,我们还将系统的有效面积从 5 平方厘米扩大到 250 平方厘米,结果表明,这种扩大不会导致性能下降。特别是在加压的 100 平方厘米电解槽上,120 多小时的平均 FECO 为 85%,二氧化碳单程转化率为 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信