Elias J. Sayour, David Boczkowski, Duane A. Mitchell, Smita K. Nair
{"title":"Cancer mRNA vaccines: clinical advances and future opportunities","authors":"Elias J. Sayour, David Boczkowski, Duane A. Mitchell, Smita K. Nair","doi":"10.1038/s41571-024-00902-1","DOIUrl":null,"url":null,"abstract":"mRNA vaccines have been revolutionary in terms of their rapid development and prevention of SARS-CoV-2 infections during the COVID-19 pandemic, and this technology has considerable potential for application to the treatment of cancer. Compared with traditional cancer vaccines based on proteins or peptides, mRNA vaccines reconcile the needs for both personalization and commercialization in a manner that is unique to each patient but not beholden to their HLA haplotype. A further advantage of mRNA vaccines is the availability of engineering strategies to improve their stability while retaining immunogenicity, enabling the induction of complementary innate and adaptive immune responses. Thus far, no mRNA-based cancer vaccines have received regulatory approval, although several phase I–II trials have yielded promising results, including in historically poorly immunogenic tumours. Furthermore, many early phase trials testing a wide range of vaccine designs are currently ongoing. In this Review, we describe the advantages of cancer mRNA vaccines and advances in clinical trials using both cell-based and nanoparticle-based delivery methods, with discussions of future combinations and iterations that might optimize the activity of these agents. Following their successful implementation in the COVID-19 pandemic, the technology behind mRNA vaccines is now being applied to cancer. In this Review, the authors described the several decades of development of mRNA vaccines for patients with cancer, including initial developments in this area involving cell-based vaccines as well as more recent developments with nanoparticle-encapsulated vaccines, which are beginning to show promising clinical activity.","PeriodicalId":19079,"journal":{"name":"Nature Reviews Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":81.1000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41571-024-00902-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
mRNA vaccines have been revolutionary in terms of their rapid development and prevention of SARS-CoV-2 infections during the COVID-19 pandemic, and this technology has considerable potential for application to the treatment of cancer. Compared with traditional cancer vaccines based on proteins or peptides, mRNA vaccines reconcile the needs for both personalization and commercialization in a manner that is unique to each patient but not beholden to their HLA haplotype. A further advantage of mRNA vaccines is the availability of engineering strategies to improve their stability while retaining immunogenicity, enabling the induction of complementary innate and adaptive immune responses. Thus far, no mRNA-based cancer vaccines have received regulatory approval, although several phase I–II trials have yielded promising results, including in historically poorly immunogenic tumours. Furthermore, many early phase trials testing a wide range of vaccine designs are currently ongoing. In this Review, we describe the advantages of cancer mRNA vaccines and advances in clinical trials using both cell-based and nanoparticle-based delivery methods, with discussions of future combinations and iterations that might optimize the activity of these agents. Following their successful implementation in the COVID-19 pandemic, the technology behind mRNA vaccines is now being applied to cancer. In this Review, the authors described the several decades of development of mRNA vaccines for patients with cancer, including initial developments in this area involving cell-based vaccines as well as more recent developments with nanoparticle-encapsulated vaccines, which are beginning to show promising clinical activity.
期刊介绍:
Nature Reviews publishes clinical content authored by internationally renowned clinical academics and researchers, catering to readers in the medical sciences at postgraduate levels and beyond. Although targeted at practicing doctors, researchers, and academics within specific specialties, the aim is to ensure accessibility for readers across various medical disciplines. The journal features in-depth Reviews offering authoritative and current information, contextualizing topics within the history and development of a field. Perspectives, News & Views articles, and the Research Highlights section provide topical discussions, opinions, and filtered primary research from diverse medical journals.