{"title":"Effects of pre-emergence herbicide on targeted post-emergence herbicide application in plasticulture production","authors":"Ana C. Buzanini, Arnold Schumann, Nathan S. Boyd","doi":"10.1007/s11119-024-10150-z","DOIUrl":null,"url":null,"abstract":"<p>Smart spray technology developed at the University of Florida was designed to reduce off-target applications when applying postemergence (POST) herbicides for weed control in plasticulture systems. A trial was conducted in the fall of 2021 and spring of 2022 to evaluate smart spray technology in row middles in a banana pepper field at the Gulf Coast Research and Education Center in Balm, FL. The objective of this study was to evaluate the efficacy of targeted POST-herbicide applications in plasticulture pepper row middles in the presence or absence of a pre-emergent (PRE) herbicide. Flumioxazin reduced broadleaf and overall weed densities in both seasons and lowered grass density in the spring. Two targeted applications reduced the nutsedge density in spring compared to the two banded applications. No significant pepper damage was observed in any treatments. Applied POST herbicide volume following PRE-herbicide was reduced by 84% and 54% for fall and spring respectively. In the absence of a PRE herbicide, targeted applications reduced POST-herbicide volumes by 30% and 45% for fall and spring respectively. No reduction in weed control or pepper yield was observed when comparing targeted with banded applications. Overall, the use of smart spray technology for POST herbicides in row middles reduced applied spray volume with no reduction in weed control, significant injuries on pepper, or negative effects on yield.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"59 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10150-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Smart spray technology developed at the University of Florida was designed to reduce off-target applications when applying postemergence (POST) herbicides for weed control in plasticulture systems. A trial was conducted in the fall of 2021 and spring of 2022 to evaluate smart spray technology in row middles in a banana pepper field at the Gulf Coast Research and Education Center in Balm, FL. The objective of this study was to evaluate the efficacy of targeted POST-herbicide applications in plasticulture pepper row middles in the presence or absence of a pre-emergent (PRE) herbicide. Flumioxazin reduced broadleaf and overall weed densities in both seasons and lowered grass density in the spring. Two targeted applications reduced the nutsedge density in spring compared to the two banded applications. No significant pepper damage was observed in any treatments. Applied POST herbicide volume following PRE-herbicide was reduced by 84% and 54% for fall and spring respectively. In the absence of a PRE herbicide, targeted applications reduced POST-herbicide volumes by 30% and 45% for fall and spring respectively. No reduction in weed control or pepper yield was observed when comparing targeted with banded applications. Overall, the use of smart spray technology for POST herbicides in row middles reduced applied spray volume with no reduction in weed control, significant injuries on pepper, or negative effects on yield.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.