New approximation method for high order impedance boundary condition with surface integral equations for the scattering problem

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Christian Daveau, Soumaya Oueslati, Molka Kacem
{"title":"New approximation method for high order impedance boundary condition with surface integral equations for the scattering problem","authors":"Christian Daveau,&nbsp;Soumaya Oueslati,&nbsp;Molka Kacem","doi":"10.1002/jnm.3239","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new method to approximate operators resulted from solving the scattering Problem in electromagnetism by dielectrically coated conducting bodies, using integral equations and high order impedance boundary condition. We introduce the variational Problem and we prove its well-posedness. After discretization, we find that operators arising from the high-order impedance boundary conditions are not well-defined. We present the new theoretical approach and highlight its potential through numerical experiments.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.3239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new method to approximate operators resulted from solving the scattering Problem in electromagnetism by dielectrically coated conducting bodies, using integral equations and high order impedance boundary condition. We introduce the variational Problem and we prove its well-posedness. After discretization, we find that operators arising from the high-order impedance boundary conditions are not well-defined. We present the new theoretical approach and highlight its potential through numerical experiments.

Abstract Image

高阶阻抗边界条件与散射问题表面积分方程的新近似方法
在本文中,我们提出了一种新方法,利用积分方程和高阶阻抗边界条件来近似解决电磁学中介质涂层导电体散射问题所产生的算子。我们引入了变分问题,并证明了其良好求解性。在离散化之后,我们发现由高阶阻抗边界条件产生的算子定义不清。我们介绍了新的理论方法,并通过数值实验强调了其潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信