Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu
{"title":"Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics","authors":"Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu","doi":"10.1016/j.nonrwa.2024.104135","DOIUrl":null,"url":null,"abstract":"<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> regular functions that generalize the prototypes <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≃</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>k</mi><mo>,</mo><mi>l</mi><mo>></mo><mn>0</mn></mrow></math></span> and all <span><math><mrow><mi>u</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. Moreover, <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> is the maximal interval of existence of solutions to the model. Once suitable initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are fixed, we are interested in deriving sufficient conditions implying globality (i.e., <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>∞</mi></mrow></math></span>) and boundedness (i.e., <span><math><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>v</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>+</mo><mo>‖</mo><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><msub><mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>≤</mo><mi>C</mi></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>) of solutions to problem <span>(1)</span>. This is achieved in the following scenarios:</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> proportional to <span><math><mi>v</mi></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mi>w</mi></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and provided one of the following conditions</p><p>(I) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (II) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (III) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span></p><p>is accomplished or <span><math><mrow><mi>τ</mi><mo>=</mo><mn>1</mn></mrow></math></span> in conjunction with one of these restrictions</p><p>(i) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo><</mo><mi>r</mi></mrow></math></span>, <span><math><mspace></mspace></math></span> (ii) <span><math><mrow><mo>max</mo><mrow><mo>[</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo>]</mo></mrow><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>,</p><p>(iii) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>, <span><math><mspace></mspace></math></span> (iv) <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>k</mi><mo><</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><mi>l</mi><mo><</mo><mi>r</mi></mrow></math></span>;</p><p><span><math><mo>⊳</mo></math></span> For <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span>, whenever <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span> if moreover one among (I), (II), (III) is fulfilled.</p><p>Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: ()Herein, is a bounded and smooth domain of , for , proper positive numbers, , and and regular functions that generalize the prototypes and , for some and all . Moreover, , and is the maximal interval of existence of solutions to the model. Once suitable initial data are fixed, we are interested in deriving sufficient conditions implying globality (i.e., ) and boundedness (i.e., for all ) of solutions to problem (1). This is achieved in the following scenarios:
For proportional to and to , whenever and provided one of the following conditions
(I) , (II) , (III)
is accomplished or in conjunction with one of these restrictions
(i) , (ii) ,
(iii) and , (iv) and ;
For and , whenever if moreover one among (I), (II), (III) is fulfilled.
Our research partially improves and extends some results derived in Jiao et al. (2024); Ren and Liu (2020); Chiyo and Yokota (2022); Columbu et al. (2023).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.