{"title":"Effects of CO2 in fungi","authors":"Benjamin J Chadwick, Xiaorong Lin","doi":"10.1016/j.mib.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO<sub>2</sub> is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO<sub>2</sub>. Different organisms can tolerate different CO<sub>2</sub> levels to various degrees, and experiencing higher CO<sub>2</sub> is toxic and can lead to death. The fungal kingdom shows great variations in response to CO<sub>2</sub> that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO<sub>2</sub>, and emphasize the effects of CO<sub>2</sub> on fungal metabolism and morphogenesis.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102488"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136952742400064X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes