Modeling the larval growth and survival of Pacific cod (Gadus macrocephalus) in the eastern Bering Sea

IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY
Giancarlo M. Correa , Thomas P. Hurst , William T. Stockhausen , Lorenzo Ciannelli , Trond Kristiansen , Darren J. Pilcher
{"title":"Modeling the larval growth and survival of Pacific cod (Gadus macrocephalus) in the eastern Bering Sea","authors":"Giancarlo M. Correa ,&nbsp;Thomas P. Hurst ,&nbsp;William T. Stockhausen ,&nbsp;Lorenzo Ciannelli ,&nbsp;Trond Kristiansen ,&nbsp;Darren J. Pilcher","doi":"10.1016/j.pocean.2024.103282","DOIUrl":null,"url":null,"abstract":"<div><p>The eastern Bering Sea (EBS) is a highly productive ecosystem that supports several important commercial species such as the Pacific cod (<em>Gadus macrocephalus</em>). Climate variability affects the population dynamics of this stock throughout its life stages, especially early life stages, since they are particularly susceptible to environmental changes. In recent decades, warm and cold stanzas (i.e., 3–5 year periods) have been observed in the EBS, and there is evidence that they can modulate the recruitment of this stock, causing important socioeconomic impacts. Using a mechanistic individual-based model, this study investigates the spatial and temporal variability of growth and survival of Pacific cod's early life stages during 2000–2020. We examined changes by year and over space and compared our results with published literature to validate our model. We found that temperature played a key role in modulating the survival of fish larvae, observing an increase in starvation events in warmer years or locations. Periods or areas with low prey density, especially small-bodied copepods, also contributed to increased starvation. The average temperature in the fish habitat was negatively correlated with recruitment estimates from the stock assessment model. Growth was primarily temperature-driven; however, food-limited growth became more frequent when larvae were smaller during cold years. Spatially, we found that the environmental conditions in the southeastern Bering Sea may favor larval survival but reduce growth, and higher mortality may be persistent on the middle and outer shelf. Our model produces results that agree with previous field studies, and it offers a valuable tool to investigate other ecological questions on the impact of the environment on early life stages of fishes.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"225 ","pages":"Article 103282"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000880","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The eastern Bering Sea (EBS) is a highly productive ecosystem that supports several important commercial species such as the Pacific cod (Gadus macrocephalus). Climate variability affects the population dynamics of this stock throughout its life stages, especially early life stages, since they are particularly susceptible to environmental changes. In recent decades, warm and cold stanzas (i.e., 3–5 year periods) have been observed in the EBS, and there is evidence that they can modulate the recruitment of this stock, causing important socioeconomic impacts. Using a mechanistic individual-based model, this study investigates the spatial and temporal variability of growth and survival of Pacific cod's early life stages during 2000–2020. We examined changes by year and over space and compared our results with published literature to validate our model. We found that temperature played a key role in modulating the survival of fish larvae, observing an increase in starvation events in warmer years or locations. Periods or areas with low prey density, especially small-bodied copepods, also contributed to increased starvation. The average temperature in the fish habitat was negatively correlated with recruitment estimates from the stock assessment model. Growth was primarily temperature-driven; however, food-limited growth became more frequent when larvae were smaller during cold years. Spatially, we found that the environmental conditions in the southeastern Bering Sea may favor larval survival but reduce growth, and higher mortality may be persistent on the middle and outer shelf. Our model produces results that agree with previous field studies, and it offers a valuable tool to investigate other ecological questions on the impact of the environment on early life stages of fishes.

建立白令海东部太平洋鳕鱼(Gadus macrocephalus)幼鱼生长和存活模型
东白令海(EBS)是一个高产生态系统,养育着多个重要的商业物种,如太平洋鳕鱼(Gadus macrocephalus)。气候多变性影响着该种群整个生命阶段的种群动态,尤其是早期生命阶段,因为它们特别容易受到环境变化的影响。近几十年来,在 EBS 观察到了温暖和寒冷阶段(即 3-5 年),有证据表明它们可以调节该种群的繁殖,从而造成重要的社会经济影响。本研究利用基于个体的机理模型,调查了 2000-2020 年间太平洋鳕鱼早期生命阶段的生长和存活的时空变化。我们考察了不同年份和不同空间的变化,并将结果与已发表的文献进行比较,以验证我们的模型。我们发现,温度在调节鱼类幼体存活率方面起着关键作用,在温度较高的年份或地点,饥饿事件会增加。猎物密度低的时期或地区,尤其是小体桡足类,也会导致饥饿增加。鱼类栖息地的平均温度与鱼类种群评估模型得出的繁殖估计值呈负相关。生长主要由温度驱动;然而,在寒冷年份,当幼体较小时,食物有限的生长变得更加频繁。从空间上看,我们发现白令海东南部的环境条件可能有利于幼体存活,但会降低生长速度,而中陆架和外陆架可能持续存在较高的死亡率。我们的模型得出的结果与之前的实地研究结果一致,它为研究环境对鱼类早期生命阶段影响的其他生态问题提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Oceanography
Progress in Oceanography 地学-海洋学
CiteScore
7.20
自引率
4.90%
发文量
138
审稿时长
3 months
期刊介绍: Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信