Single molecule imaging unveils cellular architecture, dynamics and mechanobiology

IF 6 2区 生物学 Q1 CELL BIOLOGY
Tianchi Chen, Grégory Giannone
{"title":"Single molecule imaging unveils cellular architecture, dynamics and mechanobiology","authors":"Tianchi Chen,&nbsp;Grégory Giannone","doi":"10.1016/j.ceb.2024.102369","DOIUrl":null,"url":null,"abstract":"<div><p>The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000486","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.

单分子成像揭示细胞结构、动力学和机械生物学
细胞骨架和细胞粘附的生物力学调节是各种基本细胞功能的基础。要研究它们,就必须以越来越精确的时空分辨率来观察它们的纳米结构和分子动力学。在本综述中,我们将重点介绍单分子荧光成像技术的最新进展,并讨论这些技术如何提高我们对粘附和细胞骨架等机械敏感性细胞结构的认识。我们还将讨论未来的研究方向,重点是细胞结构和组织的三维性质、它们在分子水平上的机械调控,以及超分辨率显微镜将如何增进我们对蛋白质结构和细胞构象变化的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信