High-fidelity four-photon GHZ states on chip

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame
{"title":"High-fidelity four-photon GHZ states on chip","authors":"Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame","doi":"10.1038/s41534-024-00830-z","DOIUrl":null,"url":null,"abstract":"<p>Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of <span>\\({{{{\\mathcal{F}}}}}_{{{{{\\rm{GHZ}}}}}_{4}}=(86.0\\pm 0.4)\\, \\%\\)</span>, and a purity of <span>\\({{{{\\mathcal{P}}}}}_{{{{{\\rm{GHZ}}}}}_{4}}=(76.3\\pm 0.6)\\, \\%\\)</span>. The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"45 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00830-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of \({{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0\pm 0.4)\, \%\), and a purity of \({{{{\mathcal{P}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(76.3\pm 0.6)\, \%\). The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.

Abstract Image

芯片上的高保真四光子 GHZ 状态
相互纠缠的多光子态是全光量子技术的核心。据报道,利用自由空间设备生成这种量子光态取得了令人瞩目的进展,但高保真、高速率的片上纠缠生成对未来的可扩展性至关重要。在这项工作中,我们使用基于明亮量子点的单光子源,演示了利用低损耗可重构玻璃光子电路高保真地生成 4 光子格林伯格-霍恩-蔡林格(GHZ)态。我们利用全量子态层析技术重建了生成态的密度矩阵,实验结果与目标态的保真度达到了({{{{\mathcal{F}}}}}_{{{{{\rm{GHZ}}}}}_{4}}=(86.0pm 0.4)\\%),纯度为({{{{/mathcal{P}}}}}_02/rm{GHZ}}}}}_{4}}=(76.3/pm 0.6)\\%)。通过对贝尔不等式超过 39 个标准偏差的违反,我们用一种与设备无关的半方法证明了所生成状态的纠缠性。最后,我们在芯片上执行了一个四部分量子秘密共享协议,其中一个调节器与三个对话者共享一个多达1978比特的筛选密钥,实现了10.87%的量子比特错误率。这些结果证明,量子点技术与玻璃光子电路相结合,为纠缠的产生和分配提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信