Ahmed I. Osman, Walaa Abd-Elaziem, Mahmoud Nasr, Mohamed Farghali, Ahmed K. Rashwan, Atef Hamada, Y. Morris Wang, Moustafa A. Darwish, Tamer A. Sebaey, A. Khatab, Ammar H. Elsheikh
{"title":"Enhanced hydrogen storage efficiency with sorbents and machine learning: a review","authors":"Ahmed I. Osman, Walaa Abd-Elaziem, Mahmoud Nasr, Mohamed Farghali, Ahmed K. Rashwan, Atef Hamada, Y. Morris Wang, Moustafa A. Darwish, Tamer A. Sebaey, A. Khatab, Ammar H. Elsheikh","doi":"10.1007/s10311-024-01741-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is viewed as the future carbon–neutral fuel, yet hydrogen storage is a key issue for developing the hydrogen economy because current storage techniques are expensive and potentially unsafe due to pressures reaching up to 700 bar. As a consequence, research has recently designed advanced hydrogen sorbents, such as metal–organic frameworks, covalent organic frameworks, porous carbon-based adsorbents, zeolite, and advanced composites, for safer hydrogen storage. Here, we review hydrogen storage with a focus on hydrogen sources and production, advanced sorbents, and machine learning. Carbon-based sorbents include graphene, fullerene, carbon nanotubes and activated carbon. We observed that storage capacities reach up to 10 wt.% for metal–organic frameworks, 6 wt.% for covalent organic frameworks, and 3–5 wt.% for porous carbon-based adsorbents. High-entropy alloys and advanced composites exhibit improved stability and hydrogen uptake. Machine learning has allowed predicting efficient storage materials.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1703 - 1740"},"PeriodicalIF":15.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01741-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01741-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is viewed as the future carbon–neutral fuel, yet hydrogen storage is a key issue for developing the hydrogen economy because current storage techniques are expensive and potentially unsafe due to pressures reaching up to 700 bar. As a consequence, research has recently designed advanced hydrogen sorbents, such as metal–organic frameworks, covalent organic frameworks, porous carbon-based adsorbents, zeolite, and advanced composites, for safer hydrogen storage. Here, we review hydrogen storage with a focus on hydrogen sources and production, advanced sorbents, and machine learning. Carbon-based sorbents include graphene, fullerene, carbon nanotubes and activated carbon. We observed that storage capacities reach up to 10 wt.% for metal–organic frameworks, 6 wt.% for covalent organic frameworks, and 3–5 wt.% for porous carbon-based adsorbents. High-entropy alloys and advanced composites exhibit improved stability and hydrogen uptake. Machine learning has allowed predicting efficient storage materials.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.