Eduardo Ichikawa-Escamilla, Rodrigo A. Velasco-Martínez, Laura Adalid-Peralta
{"title":"Progressive Supranuclear Palsy Syndrome: An Overview","authors":"Eduardo Ichikawa-Escamilla, Rodrigo A. Velasco-Martínez, Laura Adalid-Peralta","doi":"10.1016/j.ibneur.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>Progressive supranuclear palsy (PSP) is a neurodegenerative disease, commonly observed as a movement disorder in the group of parkinsonian diseases. The term PSP usually refers to PSP-Richardson’s syndrome (PSP-RS), the most typical clinical presentation. However, the broad concept of progressive supranuclear palsy syndrome (PSP-S) applies to a set of clinical entities that share a pathophysiological origin and some symptoms. According to its clinical predominance, PSP-S is divided into subtypes. PSP-S has clinical similarities with Parkinson's disease, and both pathologies are classified in the group of parkinsonisms, but they do not share pathophysiological traits. By contrast, the pathophysiology of corticobasal syndrome (CBS) depends on tau expression and shares similarities with PSP-S in both pathophysiology and clinical picture. An involvement of the immune system has been proposed as a cause of neurodegeneration. The role of neuroinflammation in PSP-S has been studied by neuroimaging, among other methods. As it is the case in other neurodegenerative pathologies, microglial cells have been attributed a major role in PSP-S. While various studies have explored the detection and use of possible inflammatory biomarkers in PSP-S, no significant advances have been made in this regard. This review is aimed at highlighting the most relevant information on neuroinflammation and peripheral inflammation in the development and progression of PSP-S, to lay the groundwork for further research on the pathophysiology, potential biomarkers, and therapeutic strategies for PSP-S.</p></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667242124000411/pdfft?md5=baed6a1e62b2eba18612caf78dc4a236&pid=1-s2.0-S2667242124000411-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease, commonly observed as a movement disorder in the group of parkinsonian diseases. The term PSP usually refers to PSP-Richardson’s syndrome (PSP-RS), the most typical clinical presentation. However, the broad concept of progressive supranuclear palsy syndrome (PSP-S) applies to a set of clinical entities that share a pathophysiological origin and some symptoms. According to its clinical predominance, PSP-S is divided into subtypes. PSP-S has clinical similarities with Parkinson's disease, and both pathologies are classified in the group of parkinsonisms, but they do not share pathophysiological traits. By contrast, the pathophysiology of corticobasal syndrome (CBS) depends on tau expression and shares similarities with PSP-S in both pathophysiology and clinical picture. An involvement of the immune system has been proposed as a cause of neurodegeneration. The role of neuroinflammation in PSP-S has been studied by neuroimaging, among other methods. As it is the case in other neurodegenerative pathologies, microglial cells have been attributed a major role in PSP-S. While various studies have explored the detection and use of possible inflammatory biomarkers in PSP-S, no significant advances have been made in this regard. This review is aimed at highlighting the most relevant information on neuroinflammation and peripheral inflammation in the development and progression of PSP-S, to lay the groundwork for further research on the pathophysiology, potential biomarkers, and therapeutic strategies for PSP-S.