Recurrent and (strongly) resolvable graphs

IF 2.1 1区 数学 Q1 MATHEMATICS
Daniel Lenz , Simon Puchert , Marcel Schmidt
{"title":"Recurrent and (strongly) resolvable graphs","authors":"Daniel Lenz ,&nbsp;Simon Puchert ,&nbsp;Marcel Schmidt","doi":"10.1016/j.matpur.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a new approach to recurrence and the existence of non-constant harmonic functions on infinite weighted graphs. The approach is based on the capacity of subsets of metric boundaries with respect to intrinsic metrics. The main tool is a connection between polar sets in such boundaries and null sets of paths. This connection relies on suitably diverging functions of finite energy.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"186 ","pages":"Pages 1-30"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000357/pdfft?md5=1428d47f064fd093764bfc8b1a049da0&pid=1-s2.0-S0021782424000357-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000357","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new approach to recurrence and the existence of non-constant harmonic functions on infinite weighted graphs. The approach is based on the capacity of subsets of metric boundaries with respect to intrinsic metrics. The main tool is a connection between polar sets in such boundaries and null sets of paths. This connection relies on suitably diverging functions of finite energy.

循环图和(强)可解图
我们为无限加权图上非常数谐函数的递推和存在开发了一种新方法。该方法基于关于内在度量的度量边界子集的容量。主要工具是此类边界中的极值集与路径空集之间的联系。这种联系依赖于有限能量的适当发散函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信