Automatic sequences and the Glaisher–Kinkelin constant

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
John M. Campbell
{"title":"Automatic sequences and the Glaisher–Kinkelin constant","authors":"John M. Campbell","doi":"10.1016/j.aam.2024.102721","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> denote an automatic sequence. Previous research on infinite products involving automatic sequences has mainly dealt with identities for products as in <span><math><msub><mrow><mo>∏</mo></mrow><mrow><mi>n</mi></mrow></msub><mi>R</mi><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> for rational functions <span><math><mi>R</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. This inspires the development of techniques for evaluating <span><math><msub><mrow><mo>∏</mo></mrow><mrow><mi>n</mi></mrow></msub><mi>f</mi><msup><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> more generally, for functions <span><math><mi>f</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> that are not rational functions. This leads us to apply Euler's product expansion for the Γ-function together with recursive properties of <span><math><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> to obtain identities as in <span><math><msub><mrow><mo>∏</mo></mrow><mrow><mi>n</mi></mrow></msub><mi>f</mi><msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>=</mo><mi>Γ</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, and this is motivated by how the equivalent series identity <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi></mrow></msub><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>ln</mi><mo>⁡</mo><mi>f</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>z</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo>⁡</mo><mi>Γ</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> could be applied in relation to the remarkable results due to Gosper on the integration of <span><math><mi>ln</mi><mo>⁡</mo><mi>Γ</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. We succeed in applying this approach, using Gosper's integration identities, to obtain new infinite products that we evaluate in terms of the Glaisher–Kinkelin constant <em>A</em> and that involve the Thue–Morse sequence, the period-doubling sequence, and the regular paperfolding sequence. A byproduct of our method gives us a way of generalizing a Dirichlet series identity due to Allouche and Sondow, and we also explore applications related to a product evaluation due to Gosper involving <em>A</em>.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000538","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let (a(n):nN0) denote an automatic sequence. Previous research on infinite products involving automatic sequences has mainly dealt with identities for products as in nR(n)a(n) for rational functions R(n). This inspires the development of techniques for evaluating nf(n)a(n) more generally, for functions f(n) that are not rational functions. This leads us to apply Euler's product expansion for the Γ-function together with recursive properties of a(n) to obtain identities as in nf(n,z)a(n)=Γ(z+1), and this is motivated by how the equivalent series identity na(n)lnf(n,z)=lnΓ(z+1) could be applied in relation to the remarkable results due to Gosper on the integration of lnΓ(z+1). We succeed in applying this approach, using Gosper's integration identities, to obtain new infinite products that we evaluate in terms of the Glaisher–Kinkelin constant A and that involve the Thue–Morse sequence, the period-doubling sequence, and the regular paperfolding sequence. A byproduct of our method gives us a way of generalizing a Dirichlet series identity due to Allouche and Sondow, and we also explore applications related to a product evaluation due to Gosper involving A.

自动序列和格雷舍-金克林常数
让 (a(n):n∈N0) 表示自动序列。以往关于自动序列的无穷积的研究主要涉及有理函数 R(n) 的积∏nR(n)a(n)的同构。这启发了我们开发更广泛的技术,用于评估非有理函数 f(n) 的 ∏nf(n)a(n) 。这促使我们应用欧拉对Γ函数的乘积展开以及 a(n) 的递归性质,以获得∏nf(n,z)a(n)=Γ(z+1) 中的等差数列性质,而这是由如何应用等差数列性质∑na(n)lnf(n,z)=lnΓ(z+1) 与高斯珀关于 lnΓ(z+1)积分的显著结果相关联所激发的。我们成功地运用这种方法,利用戈斯珀的积分特性,得到了新的无穷积,我们用格莱舍-金克林常数 A 对其进行评估,并涉及图-莫尔斯序列、周期加倍序列和正则折纸序列。我们方法的一个副产品为我们提供了一种方法来概括阿卢什和桑多提出的狄利克特数列特性,我们还探讨了与戈斯珀提出的涉及 A 的乘积评估有关的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信