Mamoon Ur Rashid , Sobia Ali Khan , Faisal Ghafoor , Jong-Seong Bae , Yun Chang Park , Muhammad Sheeraz , Zeeshan Tahir , Chinh Tam Le , Yong Soo Kim
{"title":"Role of Ti interfacial layer in the stability of TiO2 based transparent synaptic device","authors":"Mamoon Ur Rashid , Sobia Ali Khan , Faisal Ghafoor , Jong-Seong Bae , Yun Chang Park , Muhammad Sheeraz , Zeeshan Tahir , Chinh Tam Le , Yong Soo Kim","doi":"10.1016/j.cap.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Interface engineering plays a pivotal role in manipulating the electrical transport and conduction mechanism of a synaptic device. In this work, the impact of Ti as an interfacial layer is systematically investigated by inserting ∼5 nm thin film at both interfaces of a functional layer (TiO<sub>2</sub>). Interestingly, it was observed that Ti layers significantly regulate the migration of oxygen ions/vacancies at the interfaces yielding an improved stability from 10 to 200 cycles, sustained over a longer period ∼8 × 10<sup>3</sup> s. Forming free and gradual transition in conductance on positive bias region under a controlled compliance current ∼0.3–17 mA demonstrates the multilevel switching highlighting the typical synaptic behavior of memristor. The ohmic conduction and space charge-limited current mechanism was found across the various resistive states signifies the trapping/de-trapping. Besides, other key parameters of synaptic device such as paired pulse facilitation, depression, and short-term memory together with the excellent transmittance in the visible spectral range makes our device adequate for innovative transparent neuromorphic applications.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924000944","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interface engineering plays a pivotal role in manipulating the electrical transport and conduction mechanism of a synaptic device. In this work, the impact of Ti as an interfacial layer is systematically investigated by inserting ∼5 nm thin film at both interfaces of a functional layer (TiO2). Interestingly, it was observed that Ti layers significantly regulate the migration of oxygen ions/vacancies at the interfaces yielding an improved stability from 10 to 200 cycles, sustained over a longer period ∼8 × 103 s. Forming free and gradual transition in conductance on positive bias region under a controlled compliance current ∼0.3–17 mA demonstrates the multilevel switching highlighting the typical synaptic behavior of memristor. The ohmic conduction and space charge-limited current mechanism was found across the various resistive states signifies the trapping/de-trapping. Besides, other key parameters of synaptic device such as paired pulse facilitation, depression, and short-term memory together with the excellent transmittance in the visible spectral range makes our device adequate for innovative transparent neuromorphic applications.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.