{"title":"Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls","authors":"Isabeau Birindelli , Françoise Demengel , Fabiana Leoni","doi":"10.1016/j.matpur.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></math></span> of the equation<span><span><span><math><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span></span></span> where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> in <span><math><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>‾</mo></mover></math></span> in the case <span><math><mi>γ</mi><mo><</mo><mn>2</mn></math></span>, existence of unbounded solutions in the case <span><math><mi>γ</mi><mo>=</mo><mn>2</mn></math></span> and a non existence result for <span><math><mi>γ</mi><mo>></mo><mn>2</mn></math></span>. We also give, in the case of Pucci's operators, the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which generalizes the Hardy–Sobolev constant for the Laplacian.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"186 ","pages":"Pages 74-102"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000370","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions of the equation where in and . We prove existence of radial solutions which are continuous on in the case , existence of unbounded solutions in the case and a non existence result for . We also give, in the case of Pucci's operators, the explicit value of , which generalizes the Hardy–Sobolev constant for the Laplacian.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.