{"title":"Principal eigenvalues and eigenfunctions for fully nonlinear equations in punctured balls","authors":"Isabeau Birindelli , Françoise Demengel , Fabiana Leoni","doi":"10.1016/j.matpur.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></math></span> of the equation<span><span><span><math><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mrow><mi>on</mi></mrow><mspace></mspace><mo>∂</mo><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span></span></span> where <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> in <span><math><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>‾</mo></mover></math></span> in the case <span><math><mi>γ</mi><mo><</mo><mn>2</mn></math></span>, existence of unbounded solutions in the case <span><math><mi>γ</mi><mo>=</mo><mn>2</mn></math></span> and a non existence result for <span><math><mi>γ</mi><mo>></mo><mn>2</mn></math></span>. We also give, in the case of Pucci's operators, the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which generalizes the Hardy–Sobolev constant for the Laplacian.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions of the equation where in and . We prove existence of radial solutions which are continuous on in the case , existence of unbounded solutions in the case and a non existence result for . We also give, in the case of Pucci's operators, the explicit value of , which generalizes the Hardy–Sobolev constant for the Laplacian.