EXplainable Artificial Intelligence (XAI) for facilitating recognition of algorithmic bias: An experiment from imposed users’ perspectives

IF 7.6 2区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Ching-Hua Chuan , Ruoyu Sun , Shiyun Tian , Wan-Hsiu Sunny Tsai
{"title":"EXplainable Artificial Intelligence (XAI) for facilitating recognition of algorithmic bias: An experiment from imposed users’ perspectives","authors":"Ching-Hua Chuan ,&nbsp;Ruoyu Sun ,&nbsp;Shiyun Tian ,&nbsp;Wan-Hsiu Sunny Tsai","doi":"10.1016/j.tele.2024.102135","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the potential of eXplainable Artificial Intelligence (XAI) in raising user awareness of algorithmic bias. This study examined the popular “explanation by example” XAI approach, where users receive explanatory examples resembling their input. As this XAI approach allows users to gauge the congruence between these examples and their circumstances, perceived incongruence then evokes perceptions of unfairness and exclusion, prompting users not to put blind trust in the system and raising awareness of algorithmic bias stemming from non-inclusive datasets. The results further highlight the moderating role of users’ prior experience with discrimination.</p></div>","PeriodicalId":48257,"journal":{"name":"Telematics and Informatics","volume":"91 ","pages":"Article 102135"},"PeriodicalIF":7.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S073658532400039X/pdfft?md5=c10240dd00da5631c53004b436f3b5c9&pid=1-s2.0-S073658532400039X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073658532400039X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the potential of eXplainable Artificial Intelligence (XAI) in raising user awareness of algorithmic bias. This study examined the popular “explanation by example” XAI approach, where users receive explanatory examples resembling their input. As this XAI approach allows users to gauge the congruence between these examples and their circumstances, perceived incongruence then evokes perceptions of unfairness and exclusion, prompting users not to put blind trust in the system and raising awareness of algorithmic bias stemming from non-inclusive datasets. The results further highlight the moderating role of users’ prior experience with discrimination.

促进识别算法偏见的可扩展人工智能(XAI):从强加用户的角度进行实验
本研究探讨了可解释人工智能(XAI)在提高用户对算法偏见的认识方面的潜力。本研究考察了流行的 "举例说明 "XAI 方法,即用户收到与其输入内容相似的解释性示例。由于这种 XAI 方法允许用户衡量这些例子与他们的情况是否一致,因此感知到的不一致会唤起不公平和排斥感,促使用户不要盲目信任系统,并提高对非包容性数据集产生的算法偏见的认识。研究结果进一步凸显了用户先前受歧视经历的调节作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Telematics and Informatics
Telematics and Informatics INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
17.00
自引率
4.70%
发文量
104
审稿时长
24 days
期刊介绍: Telematics and Informatics is an interdisciplinary journal that publishes cutting-edge theoretical and methodological research exploring the social, economic, geographic, political, and cultural impacts of digital technologies. It covers various application areas, such as smart cities, sensors, information fusion, digital society, IoT, cyber-physical technologies, privacy, knowledge management, distributed work, emergency response, mobile communications, health informatics, social media's psychosocial effects, ICT for sustainable development, blockchain, e-commerce, and e-government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信