I. Wlassics, E. Lo Presti, R. Biancardi, C. Monzani, S. Barbieri
{"title":"Chemically assisted degradation of 1,3-dioxo-2-difluoromethylene-4-trifluoromethoxy-5-difluoroammonium acetate dioxole","authors":"I. Wlassics, E. Lo Presti, R. Biancardi, C. Monzani, S. Barbieri","doi":"10.1016/j.jfluchem.2024.110295","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, there has been a great strive to find new and efficient methods for the degradation of perfluorinated alkylated substances.</p><p>In this research work, we present recent advancements and results in the degradation of the surfactant “<em>c</em>C<sub>6</sub>O<sub>4</sub>-NH<sub>4</sub><sup>+</sup>” (<strong>I</strong>) (1,3-dioxo-2-difluoromethylene-4-trifluoromethoxy-5-difluoroammonium acetate dioxole) which demonstrates that it can be efficiently degraded in mild conditions, even at 20 °C.</p><p>The results of several different and innovative chemical strategies, such as DMSO induced decomposition at mild temperatures, thermal decomposition, acid/base chemistry induced decomposition, all of which decomposed <em>c</em>C<sub>6</sub>O<sub>4</sub> to CO<sub>2</sub> + HF/<em>F</em><sup><em>−</em></sup> in many cases ≥ 99.9%mol will be presented. All results will be supported by the respective kinetics, rates of reaction, thermodynamic reaction parameters, mechanisms of reaction, decomposition products, qualitative and quantitative spectroscopic analyses.</p></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"276 ","pages":"Article 110295"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorine Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022113924000551","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, there has been a great strive to find new and efficient methods for the degradation of perfluorinated alkylated substances.
In this research work, we present recent advancements and results in the degradation of the surfactant “cC6O4-NH4+” (I) (1,3-dioxo-2-difluoromethylene-4-trifluoromethoxy-5-difluoroammonium acetate dioxole) which demonstrates that it can be efficiently degraded in mild conditions, even at 20 °C.
The results of several different and innovative chemical strategies, such as DMSO induced decomposition at mild temperatures, thermal decomposition, acid/base chemistry induced decomposition, all of which decomposed cC6O4 to CO2 + HF/F− in many cases ≥ 99.9%mol will be presented. All results will be supported by the respective kinetics, rates of reaction, thermodynamic reaction parameters, mechanisms of reaction, decomposition products, qualitative and quantitative spectroscopic analyses.
期刊介绍:
The Journal of Fluorine Chemistry contains reviews, original papers and short communications. The journal covers all aspects of pure and applied research on the chemistry as well as on the applications of fluorine, and of compounds or materials where fluorine exercises significant effects. This can include all chemistry research areas (inorganic, organic, organometallic, macromolecular and physical chemistry) but also includes papers on biological/biochemical related aspects of Fluorine chemistry as well as medicinal, agrochemical and pharmacological research. The Journal of Fluorine Chemistry also publishes environmental and industrial papers dealing with aspects of Fluorine chemistry on energy and material sciences. Preparative and physico-chemical investigations as well as theoretical, structural and mechanistic aspects are covered. The Journal, however, does not accept work of purely routine nature.
For reviews and special issues on particular topics of fluorine chemistry or from selected symposia, please contact the Regional Editors for further details.