Small strain shear modulus of saturated and unsaturated cohesive soils under anisotropic consolidation

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Ngoc Bao Le , Hirofumi Toyota , Susumu Takada
{"title":"Small strain shear modulus of saturated and unsaturated cohesive soils under anisotropic consolidation","authors":"Ngoc Bao Le ,&nbsp;Hirofumi Toyota ,&nbsp;Susumu Takada","doi":"10.1016/j.sandf.2024.101464","DOIUrl":null,"url":null,"abstract":"<div><p>Cohesive soils in nature are created under anisotropic stress and have various stress histories. Embankments generate greater vertical loads underground. Moreover, associated excavation activities can exacerbate the extensional stress state. This study investigated the effects of induced anisotropy on the shear modulus in saturated and unsaturated cohesive soils. A triaxial testing apparatus, equipped with local small strain (LSS) measurement devices and bender elements (BEs), was used to measure the small strain shear modulus. Two series of tests were conducted: (1) LSS and BE tests used specimens normally consolidated under a constant mean effective stress of <em>p’</em> = 300 kPa or net mean stress <em>p</em><sub>net</sub> = 300 kPa with different stress ratios to investigate the effects of anisotropic consolidation. The values of the applied stress ratios, represented as <em>K</em> = σ<em>'</em><sub>h</sub>/ σ<em>'</em><sub>v</sub> for the saturated soil and <em>K</em><sub>net</sub> = (σ<sub>h</sub>–<em>u</em><sub>a</sub>)/(σ<sub>v</sub>–<em>u</em><sub>a</sub>) for the unsaturated soil, were 0.35, 0.43, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, and 3.5. (2) BE tests used specimens consolidated under various mean effective stresses in the order of <em>p’</em> = 50, 100, 200, 300, 400, 500, and 600 kPa, and swollen in reverse order under <em>K</em> of 0.35, 0.43, 0.6, and 1.0, to elucidate <em>p’</em> and the effects of the overconsolidation ratio (OCR). The results demonstrated that <em>K</em>-consolidation under constant <em>p’</em> produces large differences in initial shear modulus <em>G</em><sub>0</sub> in saturated cohesive soil, but <em>K</em><sub>net</sub> produces only slight differences in unsaturated cohesive soil because of the influence of strong matric suction. Finally, <em>G</em><sub>0</sub> was normalized successfully considering the effects of void ratio <em>e</em>, <em>K</em>, and OCR.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101464"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000428/pdfft?md5=31e40f412757805bbb553170f8c4639f&pid=1-s2.0-S0038080624000428-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000428","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cohesive soils in nature are created under anisotropic stress and have various stress histories. Embankments generate greater vertical loads underground. Moreover, associated excavation activities can exacerbate the extensional stress state. This study investigated the effects of induced anisotropy on the shear modulus in saturated and unsaturated cohesive soils. A triaxial testing apparatus, equipped with local small strain (LSS) measurement devices and bender elements (BEs), was used to measure the small strain shear modulus. Two series of tests were conducted: (1) LSS and BE tests used specimens normally consolidated under a constant mean effective stress of p’ = 300 kPa or net mean stress pnet = 300 kPa with different stress ratios to investigate the effects of anisotropic consolidation. The values of the applied stress ratios, represented as K = σ'h/ σ'v for the saturated soil and Knet = (σhua)/(σvua) for the unsaturated soil, were 0.35, 0.43, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0, and 3.5. (2) BE tests used specimens consolidated under various mean effective stresses in the order of p’ = 50, 100, 200, 300, 400, 500, and 600 kPa, and swollen in reverse order under K of 0.35, 0.43, 0.6, and 1.0, to elucidate p’ and the effects of the overconsolidation ratio (OCR). The results demonstrated that K-consolidation under constant p’ produces large differences in initial shear modulus G0 in saturated cohesive soil, but Knet produces only slight differences in unsaturated cohesive soil because of the influence of strong matric suction. Finally, G0 was normalized successfully considering the effects of void ratio e, K, and OCR.

各向异性固结作用下饱和及非饱和粘性土的小应变剪切模量
自然界中的粘性土是在各向异性应力作用下形成的,具有各种应力历史。堤坝会在地下产生更大的垂直荷载。此外,相关的挖掘活动也会加剧伸展应力状态。本研究调查了诱导各向异性对饱和及非饱和粘性土壤剪切模量的影响。研究使用了配备局部小应变(LSS)测量装置和弯管元件(BE)的三轴测试仪器来测量小应变剪切模量。进行了两个系列的试验:(1)LSS 和 BE 试验使用的试样通常在恒定平均有效应力 p' = 300 kPa 或净平均应力 pnet = 300 kPa 条件下固结,并具有不同的应力比,以研究各向异性固结的影响。饱和土壤的外加应力比 K = σ'h/ σ'v 表示,非饱和土壤的外加应力比 Knet = (σh-ua)/(σv-ua) 表示,其值分别为 0.35、0.43、0.6、0.8、1.0、1.5、2.0、3.0 和 3.5。(2) BE 试验使用在不同平均有效应力下固结的试样,按 p' = 50、100、200、300、400、500 和 600 kPa 的顺序固结,并在 K 为 0.35、0.43、0.6 和 1.0 的条件下反向膨胀,以阐明 p' 和过固结比 (OCR) 的影响。结果表明,在 p' 不变的情况下,K-固结在饱和粘性土中产生的初始剪切模量 G0 差别很大,但在非饱和粘性土中,由于强大的母吸力的影响,Knet 产生的初始剪切模量 G0 差别很小。最后,考虑到空隙率 e、K 和 OCR 的影响,成功地对 G0 进行了归一化处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信