A Voltage-Assist 16-Channel Electrochemical Biosensor with Linearity Compensation.

Yifei Fan, Dongmin Shi, Yanhang Chen, Qifeng Huang, Siji Huang, Qiwei Zhao, Saqib Mohamad, Jie Yuan
{"title":"A Voltage-Assist 16-Channel Electrochemical Biosensor with Linearity Compensation.","authors":"Yifei Fan, Dongmin Shi, Yanhang Chen, Qifeng Huang, Siji Huang, Qiwei Zhao, Saqib Mohamad, Jie Yuan","doi":"10.1109/TBCAS.2024.3401784","DOIUrl":null,"url":null,"abstract":"<p><p>Large capacitive loading of electrodes induces massive error current and imperfect settling in the electrochemical signal acquisition process, leading to inaccurate acquisition results. To efficiently mitigate this inaccuracy, this paper presents a current-and-voltage dual-mode acquisition technique in which a voltage front-end (VFE) is employed to acquire the electrode voltage error and compensate the nonlinearity induced by the electrode capacitive loading. Therefore, the gain and bandwidth requirements of the current front end (CFE) can be relaxed to reduce the complexity and power consumption. With a relieved gain requirement, an inverter-based capacitive trans-impedance amplifier (IB-CTIA) is adopted to boost the input transconductance for low-noise design. By reusing the supply current, the IB-CTIA effectively achieves a low input-referred current noise of 3.9 pA<sub>rms</sub> and a dynamic range (DR) of 126 dB with only 18-μW static power. The prototype chip is fabricated in a 180-nm CMOS process. Interleukin-6 immunoassays (IL-6) are implemented to verify the chip's performance. With the proposed nonlinear error compensation, the correlation coefficient of the detection result is improved from 0.951 to 0.980 and the limit of detection (LoD) is reduced from 8.31 pg/mL to 6.90 pg/mL.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3401784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large capacitive loading of electrodes induces massive error current and imperfect settling in the electrochemical signal acquisition process, leading to inaccurate acquisition results. To efficiently mitigate this inaccuracy, this paper presents a current-and-voltage dual-mode acquisition technique in which a voltage front-end (VFE) is employed to acquire the electrode voltage error and compensate the nonlinearity induced by the electrode capacitive loading. Therefore, the gain and bandwidth requirements of the current front end (CFE) can be relaxed to reduce the complexity and power consumption. With a relieved gain requirement, an inverter-based capacitive trans-impedance amplifier (IB-CTIA) is adopted to boost the input transconductance for low-noise design. By reusing the supply current, the IB-CTIA effectively achieves a low input-referred current noise of 3.9 pArms and a dynamic range (DR) of 126 dB with only 18-μW static power. The prototype chip is fabricated in a 180-nm CMOS process. Interleukin-6 immunoassays (IL-6) are implemented to verify the chip's performance. With the proposed nonlinear error compensation, the correlation coefficient of the detection result is improved from 0.951 to 0.980 and the limit of detection (LoD) is reduced from 8.31 pg/mL to 6.90 pg/mL.

带线性补偿的电压辅助型 16 通道电化学生物传感器
在电化学信号采集过程中,电极的大电容负载会引起大量误差电流和不完全沉降,导致采集结果不准确。为了有效缓解这种不准确性,本文提出了一种电流和电压双模式采集技术,其中采用了电压前端(VFE)来采集电极电压误差并补偿电极电容负载引起的非线性。因此,电流前端(CFE)的增益和带宽要求可以放宽,以降低复杂性和功耗。在降低增益要求的情况下,采用基于反相器的电容跨阻放大器(IB-CTIA)来提高输入跨导,从而实现低噪声设计。通过重复使用电源电流,IB-CTIA 有效地实现了 3.9 pArms 的低输入参考电流噪声和 126 dB 的动态范围(DR),静态功耗仅为 18μW。原型芯片采用 180 纳米 CMOS 工艺制造。白细胞介素 6 免疫测定(IL-6)的实施验证了芯片的性能。利用所提出的非线性误差补偿,检测结果的相关系数从 0.951 提高到 0.980,检测限(LoD)从 8.31 pg/mL 降低到 6.90 pg/mL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信