Synergistic anti-virulence efficacy of citral and carvacrol against mixed vaginitis causing Candida albicans and Gardnerella vaginalis: An in vitro and in vivo study
IF 2.1 4区 医学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Synergistic anti-virulence efficacy of citral and carvacrol against mixed vaginitis causing Candida albicans and Gardnerella vaginalis: An in vitro and in vivo study","authors":"Ravi Jothi, Shanmugaraj Gowrishankar","doi":"10.1038/s41429-024-00728-0","DOIUrl":null,"url":null,"abstract":"Mixed vaginitis due to bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) is the most prevalent form and presents a significant therapeutic challenge globally. Since, the administration of monotherapy leads to subsequent recurrent infections, synergistic therapy that completely eradicates both pathogens is of dire need to manage mixed vaginities scenario and to prevent its recurrence. The current investigation was focused on exploring the synergistic inhibitory efficacy of phytochemicals against the virulence traits of individual and mixed species of C. albicans and G. vaginalis in vitro and in vivo (Galleria mellonella). Out of five phytochemicals (carvacrol, thymol, cinnamaldehyde, eugenol, and borneol) screened for synergism with citral [(Ct) as the prime molecule owing to its myriad therapeutic potential], carvacrol (Ca) in combination with citral exhibited promising synergistic effect. Time-kill kinetics and one-minute contact-killing assays demonstrated the phenomenal microbicidal effect of Ct-Ca combination against both mono and dual-species within 30 min and one-minute time intervals, respectively. Furthermore, the sub-CMICs (synergistic combinatorial MIC) of Ct-Ca have significantly eradicated the mature biofilms and remarkably reduced the virulence attributes of both C. albicans and G. vaginalis (viz., yeast to hyphae transition, filamentation, protease production, and hydrophobicity index), in single and dual species states. The non-toxic nature of Ct-Ca combination was authenticated using in vitro (human erythrocyte cells) and in vivo (Galleria mellonella) models. In addition, the in vivo efficacy evaluation and subsequent histopathological investigation was done using the invertebrate model system G. mellonella, which further ascertained the effectiveness of Ct-Ca combination in fighting off the infection caused by individual and mixed species of C. albicans and G. vaginalis. Concomitantly, the current work is the first of its kind to delineate the in vitro interaction of C. albicans and G. vaginalis mixed species at their growth and biofilm states, together emphasizes the promising therapeutic potential of acclaimed phytochemicals as combinatorial synergistic therapy against mixed vaginitis","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 7","pages":"436-453"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00728-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed vaginitis due to bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) is the most prevalent form and presents a significant therapeutic challenge globally. Since, the administration of monotherapy leads to subsequent recurrent infections, synergistic therapy that completely eradicates both pathogens is of dire need to manage mixed vaginities scenario and to prevent its recurrence. The current investigation was focused on exploring the synergistic inhibitory efficacy of phytochemicals against the virulence traits of individual and mixed species of C. albicans and G. vaginalis in vitro and in vivo (Galleria mellonella). Out of five phytochemicals (carvacrol, thymol, cinnamaldehyde, eugenol, and borneol) screened for synergism with citral [(Ct) as the prime molecule owing to its myriad therapeutic potential], carvacrol (Ca) in combination with citral exhibited promising synergistic effect. Time-kill kinetics and one-minute contact-killing assays demonstrated the phenomenal microbicidal effect of Ct-Ca combination against both mono and dual-species within 30 min and one-minute time intervals, respectively. Furthermore, the sub-CMICs (synergistic combinatorial MIC) of Ct-Ca have significantly eradicated the mature biofilms and remarkably reduced the virulence attributes of both C. albicans and G. vaginalis (viz., yeast to hyphae transition, filamentation, protease production, and hydrophobicity index), in single and dual species states. The non-toxic nature of Ct-Ca combination was authenticated using in vitro (human erythrocyte cells) and in vivo (Galleria mellonella) models. In addition, the in vivo efficacy evaluation and subsequent histopathological investigation was done using the invertebrate model system G. mellonella, which further ascertained the effectiveness of Ct-Ca combination in fighting off the infection caused by individual and mixed species of C. albicans and G. vaginalis. Concomitantly, the current work is the first of its kind to delineate the in vitro interaction of C. albicans and G. vaginalis mixed species at their growth and biofilm states, together emphasizes the promising therapeutic potential of acclaimed phytochemicals as combinatorial synergistic therapy against mixed vaginitis
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.