{"title":"Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach.","authors":"Rajendran Thavasimuthu, Sudheer Hanumanthakari, Sridhar Sekar, Sakthivel Kirubakaran","doi":"10.1080/0954898X.2024.2350579","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most used diagnostic imaging techniques for identifying a variety of lung and bone-related conditions is the chest X-ray. Recent developments in deep learning have demonstrated several successful cases of illness diagnosis from chest X-rays. However, issues of stability and class imbalance still need to be resolved. Hence in this manuscript, multi-class lung disease classification in chest x-ray images using a hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach is proposed (MPNN-Hyb-MRF-VEA). Initially, the input chest X-ray images are taken from the Covid-Chest X-ray dataset. Anisotropic diffusion Kuwahara filtering (ADKF) is used to enhance the quality of these images and lower noise. To capture significant discriminative features, the Term frequency-inverse document frequency (TF-IDF) based feature extraction method is utilized in this case. The Multilayer Perceptron Neural Network (MPNN) serves as the classification model for multi-class lung disorders classification as COVID-19, pneumonia, tuberculosis (TB), and normal. A Hybrid Manta-Ray Foraging and Volcano Eruption Algorithm (Hyb-MRF-VEA) is introduced to further optimize and fine-tune the MPNN's parameters. The Python platform is used to accurately evaluate the proposed methodology. The performance of the proposed method provides 23.21%, 12.09%, and 5.66% higher accuracy compared with existing methods like NFM, SVM, and CNN respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2350579","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most used diagnostic imaging techniques for identifying a variety of lung and bone-related conditions is the chest X-ray. Recent developments in deep learning have demonstrated several successful cases of illness diagnosis from chest X-rays. However, issues of stability and class imbalance still need to be resolved. Hence in this manuscript, multi-class lung disease classification in chest x-ray images using a hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach is proposed (MPNN-Hyb-MRF-VEA). Initially, the input chest X-ray images are taken from the Covid-Chest X-ray dataset. Anisotropic diffusion Kuwahara filtering (ADKF) is used to enhance the quality of these images and lower noise. To capture significant discriminative features, the Term frequency-inverse document frequency (TF-IDF) based feature extraction method is utilized in this case. The Multilayer Perceptron Neural Network (MPNN) serves as the classification model for multi-class lung disorders classification as COVID-19, pneumonia, tuberculosis (TB), and normal. A Hybrid Manta-Ray Foraging and Volcano Eruption Algorithm (Hyb-MRF-VEA) is introduced to further optimize and fine-tune the MPNN's parameters. The Python platform is used to accurately evaluate the proposed methodology. The performance of the proposed method provides 23.21%, 12.09%, and 5.66% higher accuracy compared with existing methods like NFM, SVM, and CNN respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.