Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis.
{"title":"Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against <i>Toxoplasma gondii</i> based on calcium-dependent protein kinases antigens through an <i>in-silico</i> analysis.","authors":"Ali Dalir Ghaffari, Fardin Rahimi","doi":"10.7774/cevr.2024.13.2.146","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Infection by the intracellular apicomplexan parasite <i>Toxoplasma gondii</i> has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with <i>T. gondii</i>, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against <i>T. gondii</i> using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5.</p><p><strong>Materials and methods: </strong>Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted.</p><p><strong>Results: </strong>The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against <i>T. gondii</i> parasite.</p><p><strong>Conclusion: </strong><i>In silico</i>, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.</p>","PeriodicalId":51768,"journal":{"name":"Clinical and Experimental Vaccine Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Vaccine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7774/cevr.2024.13.2.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5.
Materials and methods: Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted.
Results: The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite.
Conclusion: In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.
期刊介绍:
Clin Exp Vaccine Res, the official English journal of the Korean Vaccine Society, is an international, peer reviewed, and open-access journal. It covers all areas related to vaccines and vaccination. Clin Exp Vaccine Res publishes editorials, review articles, special articles, original articles, case reports, brief communications, and correspondences covering a wide range of clinical and experimental subjects including vaccines and vaccination for human and animals against infectious diseases caused by viruses, bacteria, parasites and tumor. The scope of the journal is to disseminate information that may contribute to elaborate vaccine development and vaccination strategies targeting infectious diseases and tumors in human and animals. Relevant topics range from experimental approaches to (pre)clinical trials for the vaccine research based on, but not limited to, basic laboratory, translational, and (pre)clinical investigations, epidemiology of infectious diseases and progression of all aspects in the health related issues. It is published printed and open accessed online issues (https://ecevr.org) two times per year in 31 January and 31 July. Clin Exp Vaccine Res is linked to many international databases and is made freely available to institutions and individuals worldwide