Meredith L Wallace, Susan Redline, Nina Oryshkewych, Sanne J W Hoepel, Annemarie I Luik, Katie L Stone, Rachel P Kolko, Joon Chung, Yue Leng, Rebecca Robbins, Ying Zhang, Lisa L Barnes, Andrew S Lim, Lan Yu, Daniel J Buysse
{"title":"Pioneering a multi-phase framework to harmonize self-reported sleep data across cohorts.","authors":"Meredith L Wallace, Susan Redline, Nina Oryshkewych, Sanne J W Hoepel, Annemarie I Luik, Katie L Stone, Rachel P Kolko, Joon Chung, Yue Leng, Rebecca Robbins, Ying Zhang, Lisa L Barnes, Andrew S Lim, Lan Yu, Daniel J Buysse","doi":"10.1093/sleep/zsae115","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Harmonizing and aggregating data across studies enables pooled analyses that support external validation and enhance replicability and generalizability. However, the multidimensional nature of sleep poses challenges for data harmonization and aggregation. Here we describe and implement our process for harmonizing self-reported sleep data.</p><p><strong>Methods: </strong>We established a multi-phase framework to harmonize self-reported sleep data: (1) compile items, (2) group items into domains, (3) harmonize items, and (4) evaluate harmonizability. We applied this process to produce a pooled multi-cohort sample of five US cohorts plus a separate yet fully harmonized sample from Rotterdam, Netherlands. Sleep and sociodemographic data are described and compared to demonstrate the utility of harmonization and aggregation.</p><p><strong>Results: </strong>We collected 190 unique self-reported sleep items and grouped them into 15 conceptual domains. Using these domains as guiderails, we developed 14 harmonized items measuring aspects of satisfaction, alertness/sleepiness, timing, efficiency, duration, insomnia, and sleep apnea. External raters determined that 13 of these 14 items had moderate-to-high harmonizability. Alertness/Sleepiness items had lower harmonizability, while continuous, quantitative items (e.g. timing, total sleep time, and efficiency) had higher harmonizability. Descriptive statistics identified features that are more consistent (e.g. wake-up time and duration) and more heterogeneous (e.g. time in bed and bedtime) across samples.</p><p><strong>Conclusions: </strong>Our process can guide researchers and cohort stewards toward effective sleep harmonization and provide a foundation for further methodological development in this expanding field. Broader national and international initiatives promoting common data elements across cohorts are needed to enhance future harmonization and aggregation efforts.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae115","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: Harmonizing and aggregating data across studies enables pooled analyses that support external validation and enhance replicability and generalizability. However, the multidimensional nature of sleep poses challenges for data harmonization and aggregation. Here we describe and implement our process for harmonizing self-reported sleep data.
Methods: We established a multi-phase framework to harmonize self-reported sleep data: (1) compile items, (2) group items into domains, (3) harmonize items, and (4) evaluate harmonizability. We applied this process to produce a pooled multi-cohort sample of five US cohorts plus a separate yet fully harmonized sample from Rotterdam, Netherlands. Sleep and sociodemographic data are described and compared to demonstrate the utility of harmonization and aggregation.
Results: We collected 190 unique self-reported sleep items and grouped them into 15 conceptual domains. Using these domains as guiderails, we developed 14 harmonized items measuring aspects of satisfaction, alertness/sleepiness, timing, efficiency, duration, insomnia, and sleep apnea. External raters determined that 13 of these 14 items had moderate-to-high harmonizability. Alertness/Sleepiness items had lower harmonizability, while continuous, quantitative items (e.g. timing, total sleep time, and efficiency) had higher harmonizability. Descriptive statistics identified features that are more consistent (e.g. wake-up time and duration) and more heterogeneous (e.g. time in bed and bedtime) across samples.
Conclusions: Our process can guide researchers and cohort stewards toward effective sleep harmonization and provide a foundation for further methodological development in this expanding field. Broader national and international initiatives promoting common data elements across cohorts are needed to enhance future harmonization and aggregation efforts.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.